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It is natural to think that in perceiving dynamic scenes, vision takes
a series of snapshots. Motion perception can ensue when the
snapshots are different. The snapshot metaphor suggests two
questions: (i) How does the visual system put together elements
within each snapshot to form objects? This is the spatial grouping
problem. (ii) When the snapshots are different, how does the visual
system know which element in one snapshot corresponds to which
element in the next? This is the temporal grouping problem. The
snapshot metaphor is a caricature of the dominant model in the
field—the sequential model—according to which spatial and tem-
poral grouping are independent. The model we propose here is an
interactive model, according to which the two grouping mecha-
nisms are not separable. Currently, the experiments that support
the interactive model are not conclusive because they use stimuli
that are excessively specialized. To overcome this weakness, we
created a new type of stimulus—spatiotemporal dot lattices—
which allow us to independently manipulate the strength of
spatial and temporal groupings. For these stimuli, sequential
models make one fundamental assumption: if the spatial config-
uration of the stimulus remains constant, the perception of spatial
grouping cannot be affected by manipulations of the temporal
configuration of the stimulus. Our data are inconsistent with this
assumption.

V ision uses small receptors to sample optical information.
Spatial grouping is the process by which samples are linked

across space to form more complex visual entities, such as objects
and surfaces. Temporal grouping is the process by which visual
entities are linked over time. Spatial grouping and temporal
grouping either are sequential or they interact. If the perception
of dynamic scenes is the result of the successive application of
these two kinds of grouping, we have a sequential model of
motion perception. If the perception of dynamic scenes is the
result of spatial and temporal grouping operating in parallel, we
have an interactive model.

The Sequential Model. Let us consider two versions of the sequen-
tial model: one in which spatial grouping comes first, the other
in which temporal grouping comes first. The perception of most
dynamic stimuli can be explained by describing them as a
succession of snapshots (1). For example, according to Ullman
(2), vision first does grouping within each snapshot and then
finds a mapping between these groupings across the snapshots.
These groupings are often called matching units. In this view,
spatial grouping alone determines the matching units that will
undergo temporal grouping.

Some stimuli, however, are designed to prevent us from applying
spatial grouping first. These are, for example, random-dot cin-
ematograms (3). These are dynamic displays in which each frame
contains a different random texture. If the frames are not corre-
lated, one sees random dynamic ‘‘snow.’’ If dots in a patch of the
display are correlated across frames, the patch will segregate, and
its shape will be visible. A sequential model can account for the
perception of such displays by assuming that temporal grouping
extracts coherently moving elements [a process known as grouping
by common fate (4)], which then undergo spatial organization.

Some data that appear to imply an interactive model can
actually be explained by a sequential model. Consider, for
example, the Ternus display (5), which consists of two rapidly

alternating frames—f1 and f2—in which dots can occupy four
equally spaced collinear positions pqrs (Fig. 1). The dots in f1 are
at pqr; the dots in f2 are at qrs. This display can give rise to two
percepts: (i) Element motion (e-motion) is seen when the two
dots in positions q and r appear immobile, while one dot appears
to move between the positions p and s. (ii) Group motion
(g-motion) is seen when three dots appear to move, as a group,
back and forth between pqr and qrs. The longer the interstimulus
interval (ISI; interframe interval in this context), the higher the
likelihood of g-motion (6). This is called the ISI effect. It is
tempting to view this phenomenon as evidence for an interactive
model (7). To see why, assume that the shorter the ISI, the
stronger the temporal grouping. When the ISI is sufficiently
short, temporal grouping could be stronger than spatial group-
ing. Thus, rather than grouping with the dot at r in f1, the dot at
q in f1 would group with the dot at q in f2. The result is e-motion.
As ISI grows, the strength of temporal grouping drops, and
concurrent dots group within frames, resulting in g-motion.
However, a sequential model can also account for the ISI effect.
Suppose that longer ISIs have two effects: (i) they weaken
temporal grouping, and (ii) they give spatial grouping more time
to consolidate the organization of concurrent dots. According to
(ii), the ISI effect is caused by spatial rather than temporal
grouping and is consistent with a sequential model (8).

The Interactive Model. Only an interactive model can account for
the perception of motion when neither spatial grouping alone
nor successive spatial and temporal grouping operations could
derive matching units. Unfortunately, the only persuasive evi-
dence in favor of the interactive model comes from displays in
which objects and surfaces (transparent or opaque) overlap, and
their spatial relation changes dynamically. For example, in
certain kinetic occlusion (9–11) displays, we see a hitherto visible
part of the scene become occluded by an opaque surface. In such
displays, there is no simple correspondence between successive
frames, because one frame contains a different number of
elements than the next.†

We are concerned that the evidence from such displays is not
general enough to refute sequential models as a class, because
such displays may trigger a specialized mechanism that processes
kinetic occlusion in which spatial and temporal grouping inter-
act. For example, kinetic occlusion offers two characteristic
clues: (i) the accretion or deletion of texture, as a textured object
emerges from or disappears behind an occluder (9), and (ii) the
presence of ‘‘T-junctions’’ between the contours of an occluder
and the contours of an object it occludes (14, 15). To address
these concerns, we designed displays that are not likely to trigger
specialized motion-perception mechanisms.

Abbreviations: ISI, interstimulus interval; element motion, e-motion; group motion, g-
motion; log-odds, logarithm of odds.

*To whom reprint requests should be addressed. E-mail: sergei@virginia.edu or
kubovy@virginia.edu.

†A similar problem occurs if the moving object or surface is transparent (12, 13): finding
correspondence between successive frames is hampered because the appearance of the
region that is seen through a transparent surface changes as it becomes uncovered.
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Motion Lattices. To refute the sequential models, we will show
that spatial and temporal grouping mechanisms interact even
when simple matching between the successive frames is possible.
We created spatiotemporal dot lattices (motion lattices) in which
we could independently vary the strength of spatial and temporal
grouping by manipulating the spatial proximity of concurrent
and successive dots [a generalization of the stimuli used by Burt
and Sperling (16)]. We varied the strength of temporal grouping
by manipulating the spatial proximity between successive dots.
To avoid ambiguities of data interpretation that beset the Ternus
display (i.e., the ISI effect), we held ISI constant. In our displays,
as in the Ternus display, observers see either e-motion or
g-motion. The advantage of motion lattices over the Ternus
display is that in lattices the directions of e-motion and g-motion
differ. The direction of e-motion is determined by matching
individual dots in successive frames of the display. The direction
of g-motion is determined by the matching of dot groupings in
successive frames.

If we show an observer a single frame of a motion lattice, its
spatial grouping is determined by the relative distance between
concurrent dots (17). Although we hold the ISI constant, temporal
grouping can be determined only by spatial distances between
successive dots. According to the sequential model, the propensity
of dots to group within frames—and thus yield g-motion—is
independent of the determinants of temporal grouping. To test this
prediction, we ask whether the frequency of g-motion changes when
we hold constant the relative distance between concurrent dots and
vary the spatial distance between successive dots. We find that it
does, and on this basis we will claim that we have refuted the
sequential model in favor of the interactive model.

General Methods
A motion lattice is a lattice of locations, whose rows we call
baselines (b1, b2, b3, . . . ; Fig. 2a), displayed in two frames, f1 and
f2. In f1, dots occupy the locations of the odd-numbered base-
lines; in f2, dots occupy the locations of the even-numbered

Fig. 1. Ternus display. The dotted arrows show the directions of perceived motion. (a) Element motion. (b) Group motion.

Fig. 2. (a) Three rows (baselines) of a motion lattice. The solid and open circles stand for dots that appear in frames f1 and f2, respectively. The three spatial
parameters of motion lattices are: ubu, the distance between adjacent dots in a baseline; um1u, the shortest distance between successive dots; and u1, the acute
angle between the orientations b and m1. The acute angle between b and m2 is u2. S is the second (after b) shortest distance within a frame. To minimize edge
effects, we modulated the luminance of lattice dots [radius 5 0.3 degrees of visual angle (dva)] according to a Gaussian distribution (s 5 1.5 dva). We held m1

(5 0.9 dva) constant. (b) Time line of each trial. We kept the total duration of each presentation at 1.76 s to prevent the percept of oscillatory motion, which
sometimes is seen with longer presentations. (c and d) Two successive frames of a motion lattice captured from the computer screen (not to scale). (e) A response
screen with three response options. (Labels were not presented in the display.)
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baselines. When these frames rapidly alternate (f1, f2, f1, . . .)
under appropriate spatial and temporal conditions, motion
lattices are perceived as a continuous flow of apparent motion.
Motion lattices are specified by two temporal and three spatial
parameters. The two temporal parameters were kept constant:
ISI (5 0) and frame duration (5 176 ms). The three spatial
parameters are: ubu, the distance between adjacent dots in a
baseline; um1u, the shortest distance between a dot in an f1-frame
and a dot in an f2-frame; u1, the angle between the orientations
of b and m1.

Two kinds of apparent motion can be seen in motion lattices:

Y e-motion is based on element-to-element matching. In e-mo-
tion, each dot in a baseline is matched with a dot in an adjacent
baseline. The three shortest distances between successive dots
are um1u#um2u#um3u (Fig. 2a). The shorter the distance be-
tween dots, the more often the dots are linked in apparent
motion (18, 19). Motion along m1 is seen more often than
along m2 and never along m3. The strength of grouping
between successive elements is called affinity (2), which is
inversely related to interdot distance.

Y g-motion is based on grouping-to-grouping matching. That is to
say, in g-motion matching occurs between dot groupings (called
virtual objects) as wholes. For example, in Figs. 2 c–d, suppose
that the observer sees the lattice organized into virtual objects
that coincide with the baselines, i.e., into horizontal strips of dots.
If the observer sees vertical motion, it must be g-motion, because
neither m1 nor m2 is vertical. In other cases, the virtual objects
may not coincide with the baselines, but g-motion is always
orthogonal to the virtual objects.‡

The sequential model predicts (for our stimuli) that the
direction of motion will be determined solely by spatial grouping.
To test this prediction, we measure the relative frequency of
e-motion and g-motion, where we hold the determinants of
spatial grouping constant and vary the spatial determinants of
temporal grouping.

Spatial Grouping. The determinants of spatial grouping in static
lattices are known: the dots group by proximity alone indepen-
dent of lattice configuration. The strength of this grouping is
called attraction. Attraction decreases exponentially, as the
relative distance between dots increases (17). Analogously,
within each frame of a motion lattice, the likelihood of different
spatial groupings is controlled by the ratio of the two shortest
interdot distances, rs 5 (usuyubu) (Fig. 2a). (uSu is equal to the
shortest of the two distances: =4um1u2 1 ubu2 6 4um1ibu cos u1.)
We call rs the static ratio. If we hold this ratio constant, the
likelihood of different virtual objects within a frame will remain
constant.

Temporal Grouping. In motion lattices temporal grouping is the
outcome of two competitions:

Y e-motion vs. g-motion: Because we are holding the temporal
parameters constant, the outcome of this competition is
controlled by the baseline ratio, rb 5 (ubuyum1u). For example,
if rb is low, then attraction within the baselines is high;
therefore, observers are likely to see g-motion orthogonal to
the baseline. If rb is higher, then attraction within the baselines

is lower; therefore, observers are less likely to see g-motion
orthogonal to the baseline and—depending on the parameters
of the motion lattice—they will see either e-motion or g-
motion orthogonal to other virtual objects.

Y between alternative e-motions: The outcome of this competition
is controlled by the motion ratio, rm 5 (um2uyum1u). If rm is high,
then temporal grouping favors m1 motion over m2 motion.

The time line of a trial is shown in Fig. 2b. After fixating a
central dot, observers viewed the motion sequence. In the trials
with three response options, the response screen displayed three
radial lines (Fig. 2e): two were parallel to the most probable
orientations of e-motion (m1 and m2), and one was orthogonal
to the baselines, orth. In the trials with two response options, the
response screen displayed two radial lines, parallel to the ori-
entations of m1 and m2. Observers reported the orientation of
the motion by clicking on one of the circles attached to the lines
on the response screen. The mask was an array of randomly
moving dots. We randomized the orientation of the lattice
between trials to minimize carryover from trial to trial.

Experiment 1
In Experiment 1, which is a control experiment, we show that
changes in the frequency of g-motion are not attributable to
observers’ confusion between the response options. This possibility
arises because as the orientations of m1 and m2 vectors approach the
orthogonal to the baseline, confusion between orth and affinity
responses (m1, m2) might increase. Response confusion might
mimic an effect of interaction between the two types of grouping.

Methods. We held u1 (5 60°) constant and chose six motion lattices,
each of which is defined by a (rm, rb) pair: (1.00, 1.00), (1.07, 1.13),
(1.15, 1.24), (1.23, 1.35), (1.30, 1.44), (1.38, 1.54). Because of the
geometry of motion lattices, when one holds u1 constant, rm and rb
covary: rm 5 rb (=um1u2 1 ubu2 2 2um1ibucos u1yubu).

Our six observers had normal or corrected-to-normal vision
and were naive as to the purpose of the experiment. Each
observer went through 100 trials per motion lattice (i.e., 600
trials) for each of two 1-hour sessions—one with two (m1 and
m2) and the other with three (m1, m2, and orth) response options
in the response screen.

Results and Discussion. The pie charts in Fig. 3a represent the
relative proportion of m1, m2, and orth responses as a function
of rm, rb. Because u2 varied, we represent this variation by
changing the diameters of the pie charts in proportion to eru,
where ru 5 [(tan u2)/(tan u1)]. We split this three-way variation
into two independent parts:

Y Affinity function: In Fig. 3b, we plot the logarithm of odds
(log-odds) with which observers chose e-motion along m2 over
m1 for the two sessions. First, we note that because log-
odds(m2, m1)§ decrease linearly as a function of rm 5 (um2uy
um1u), the odds [p(m2)]y[p(m1)] decrease exponentially as a
function of rm. Further, we note that the confusion between
the orth responses and the affinity responses (m1, m2) had
little effect on response frequencies in the three-response
sessions. The affinity function with three response options
(thick line, ‘‘+’’ symbols) differed little from the affinity
function with two response options (thin line, ‘‘1’’ symbols),
compared to the effect of rm.

Y Objecthood function: In Fig. 3c, we plot the log-odds with
which observers chose g-motion over e-motion for the three-
response session. This function reflects the tradeoff between
group-to-group and element-to-element matching. Because

‡Orthogonal motion in motion lattices is an outcome of the so-called aperture problem
(20–22). The aperture problem arises, for example, when a bar is moved behind an
aperture so that its terminators are hidden: only the motion orthogonal to the bar is
visible, even if the true motion of the bar is different. However, when the bar has a gap
(or some other conspicuous feature), the visual system’s solution is surprising: the gap
appears to slide along the bar and does not disambiguate the direction of motion (20, 21,
23). In motion lattices, when dot grouping within the virtual objects is strong, the dots
appear to move along the objects, like beads on a string. §(log-odds (m2, m1) 5 ln[p(m2)]y[p(m1)] 5 sm (rm 2 1), where sm is the slope.
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log-odds (orth, m1 ~ m2)¶ decrease linearly as a function of
rb 5 (ubu/um1u), the odds p(orth)y[p(m1) 1 p(m2)] decrease
exponentially as a function of rb.

As in previous studies of perceptual grouping in space–time,
these data cannot adjudicate between the sequential model and the
interactive model. The sequential model implies that the frequency
of g-motion will decrease as a function of rb because when baseline
ratios are high, the tendency of concurrent dots to form virtual
objects is low. The interactive model implies that the frequency of
g-motion will decrease as a function of rm because larger motion
ratios strengthen temporal grouping and thus favor element-to-
element matching at the expense of group-to-group matching.

Experiment 2
Methods. In Experiment 2, we crossed five values of rm (1.0, 1.1,
1.2, 1.3, and 1.4) with four values of rb (1.11, 1.43, 1.25, and 1.67)
to create 20 types of motion lattices. This was possible because
we allowed u1 to vary. Our seven observers had normal or
corrected-to-normal vision and were naive as to the purpose of
the experiment. On each trial, they were offered three response
options—m1, m2, and orth. Every observer went through 40 trials
per motion lattice, i.e., 800 trials in one session. In all other
respects, the experiment was identical to Experiment 1.

Results and Discussion. The distribution of the three responses
varied systematically as a function of rm, rb, and ru (Fig. 4e). In
Fig. 4g, we plot four linear objecthood functions to show the
tradeoff between g-motion and e-motion as a function of both rm
and rb. The statistical model used to fit these functions accounts
for 98% of variance in the data. (We used this model to
interpolate the response frequencies for Fig. 4h). The frames in
Fig. 4 a–d illustrate different outcomes of spatial grouping
within the frames. When spatial grouping favors the formation
of salient virtual objects orthogonal to the baselines (Fig. 4a: low
rm and high rb), g-motion orthogonal to the baselines is never
seen, and e-motion dominates (Fig. 4g). As rb decreases within
the same rm (Fig. 4, a and c), spatial grouping progressively
favors the formation of objects within the baselines, and the
frequency of g-motion grows relative to the frequency of e-mo-
tion. As rm increases within the high rbs (Fig. 4, a and b), the
virtual objects not parallel to the baselines become less orthog-
onal to the baselines and less salient and thus allow a higher
frequency of g-motion. Within the small rbs, the growing rm does
not cause appreciable change in the high salience of virtual
objects (Fig. 4, c and d), and the frequency of g-motion does not
change.

The gray curves in the background of Fig. 4e are iso-rs lines.
Each of these curves represents the set of lattice configurations
for which spatial grouping favors the formation of identical
virtual objects. As Fig. 4e shows, the frequency of g-motion
changes along iso-rs lines. To make this observation explicit, we
interpolated the empirical frequencies of g-motion and plotted
them within the iso-rs sets in Fig. 4h: as rb increases, the
frequency of g-motion within the iso-rs sets drops rapidly. As
temporal grouping progressively becomes stronger than spatial
grouping, observers tend to see g-motion less frequently and
e-motion more frequently. (Note that as one moves within each
iso-rs set from high to low g-motion frequencies, rm grows, and
therefore one of the e-motions, m1 motion, becomes increas-
ingly salient.) The interactive model can explain this result, for
example by pitting against each other the two scales of spatial
grouping (elements vs. element aggregates) after the temporal
grouping operation (24): g-motion wins the competition with
e-motion when the latter becomes ambiguous at low rm, so that
the dot aggregates (virtual objects), and not the individual
dots, become the moving entities. (We thank one of the
anonymous reviewers for suggesting we emphasize this point.)

We conclude that the sequential model does not hold: Invari-
ant conditions for spatial grouping contribute to the perception
of apparent motion differently, depending on the conditions for
temporal grouping.

General Discussion
Using spatiotemporal dot lattices, we varied the spatial dis-
tances between concurrent dots and spatiotemporal distances
between successive dots. Each dot could be grouped either (i)
with a successive dot to generate e-motion or (ii) with con-
current dots to form (virtual) objects that are matched to
generate g-motion. According to the sequential model, the
only factor that can determine which of these is seen is the
attraction between concurrent dots. We held attraction be-
tween concurrent dots constant and found that affinity be-
tween successive dots determines whether e-motion or g-
motion will be seen. Thus we have refuted the sequential
model in favor of the interactive model. Our findings imply
that matching units can arise at any level in the cascade of
visual processes, as late as the level of complex objects (25), in
contrast to the view that matching units were derived early in
visual perception (2).

Current theories of motion perception distinguish between
three systems that compute motion. The systems differ by the

¶(log-odds (orth, m1 ~ m2) 5 ln[p(orth)]y[p(m1) 1 p(m2)] 5 sbrb 1 k), where sb is the
slope.

Fig. 3. Results of Experiment 1. (a) The pie charts (averaged over observers)
showhowthedistributionof theresponses (m1,m2, andorth) variedasa function
of the motion ratio, rm, and the baseline ratio, rb, in the three-response sessions.
These data are decomposed in (b and c). (b) Affinity function: the tradeoff
between the probabilities of two alternative e-motions. Two affinity functions
were obtained in different sessions: with three response options (the thick line
through ‘‘+’’ symbols) and with two response options (the thin line through ‘‘1’’
symbols). (c) Objecthood function: the tradeoff between the probability of
e-motion (m1 or m2) and the probability of g-motion (orth).
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complexity of the spatial representations on which they are
based (26–29). The first-order system can detect the temporal
modulation of raw luminances but is insensitive to spatial
configuration. In our stimuli, this system can detect e-motion,
because the displacement of each dot is a temporal modulation
of luminance, but it cannot detect g-motion, because the
direction of g-motion does not correspond to the direction of
motion of any dot. The perception of g-motion requires a
system that can take advantage of the spatial organization of
the stimulus. Thus, g-motion is detected either by a second-
order system that matches spatial features or by a third-order
system that derives motion of more complex visual constructs.

How does vision decide which of the spatial representations
will determine what is moving? According to the sequential
model, the alternative spatial representations compete before

motion matching, whereas according to the interactive model
these representations compete after motion matching, i.e.,
among the outputs of the alternative motion systems: first-,
second-, or third-order (30).

Most theories of motion perception are versions of the se-
quential model (30). A notable theory that agrees with the
interactive model has been proposed by Wilson, Ferrera, and Yo
(24). According to this theory, matching is applied in parallel to
the raw visual input (the first-order system) and to the output of
a preprocessor (the second-order system). When the outputs of
the two motion systems support different motion directions, they
compete, and the winner takes all. Wilson et al.’s model is
interactive because the competition between different spatial
representations occurs after motion computation. As it happens,
the evidence that inspired their model is actually consistent with

Fig. 4. (a–d) Single frames captured from the computer screen with the extreme values of rm 5 (um2uyum1u) and rb 5 (ubu)yum1u). The snapshots are arranged in
the (rm, rb) space, parallel to the plot in e. (e) The pie charts show the distribution of the three responses in the 20 motion lattices. The gray lines on the background
are the iso-rs lines, where rs 5 (usuyubu), which are the contours for which within-frame spatial grouping should remain constant. For the isoline rs 5 1.0, the
organizations along s and b are equiprobable. It is marked with an oblique arrow (Upper Right). Conditions that favor dot grouping within the baselines (rs .

1.0; e.g., c and d) lie to the right of the isoline of rs 5 1.0; in the rest of the conditions (rs , 1.0), dots tend to form groupings not along the baselines (as in
a). ( f ) Affinity function collapsed across the rb conditions. (g) Four objecthood functions summarize the effects of the baseline and motion ratios, rb and rm. The
frequency of g-motion grows rapidly as rb drops and groupings along the baselines become more prominent. This effect is evident both when rb is low (high
ambiguity of e-motion) and when rb is high (m1 wins the competition with m2). The plot in h explicates the effect of rs. Dot organizations within the baselines
dissolve as rs grows, which reduces the frequency of g-motion. In contrast to the prediction of the sequential model, e-motion and g-motion tradeoff within the
iso-rs sets.
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a sequential model.\ Our data, on the other hand, do support the
model of Wilson et al. (24).

To summarize, the interactive model holds that spatial organi-
zation and motion matching are tightly integrated. The identity of

moving visual entities is determined both by spatial proximities
between elements at each moment and by spatial proximities
between elements that occur at successive moments. Thus visual
objects emerge when motion matching between element aggregates
(Gestalts) is stronger than motion matching between elements.

We thank D. R. Proffitt, M. Shiffrar, J. Wagemans, and S. Yantis for
valuable discussions; W. Epstein, J. Hochberg, C. Von Hofsten, and three
anonymous reviewers for helpful comments on an earlier version of the
manuscript; and D. M. Johnson and S. C. Haden for assistance in running
the experiments. This work was supported by National Eye Institute
Grant 9 R01 EY12926-06.
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