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ABSTRACT

Sensory systems adapt to environmental change. It has been argued
that adaptation should have the effect of optimizing sensitivity to
the new environment. Here we consider a framework in which this
premise is made concrete using an economic normative theory of
visual motion perception. In this framework, visual systems adapt
to the environment by reallocating their limited neural resources.
The allocation is optimal when uncertainties about different aspects
of stimulation are balanced. This theory makes predictions about
visual sensitivity as a function of environmental statistics. Adaptive
optimization of the visual system should be manifested as a change
in sensitivity for an observer and for the underlying motion-sensitive
neurons. We review evidence supporting these predictions and
examine effects of adaptation on the neuronal representation of
visual motion.
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1. Introduction

Sensitivity is a measure of how
well an organism or a single neuron
can detect a stimulus or discriminate
between stimuli. Low sensitivity means
that the stimulus needs to have a high
intensity or high contrast to be detected
or to be discriminated from another
stimulus. Conversely, high sensitivity
means that a low intensity or low
contrast of the stimulus is sufficient for
its detection or discrimination.

One of the fundamental tenets of sensory biology is that sensory sys-
tems adapt to environmental change. It has been argued that adapta-
tion should have the effect of optimizing sensitivity to the new en-
vironment. Attempts to corroborate this view in visual neuroscience
led to controversy. This is because adaptation to a visual environment
has been expected to improve visual performance in that environ-
ment, relative to performance before adaptation. This expectation
has been contradicted by the fact that adaptation has been observed
to have different effects: it can decrease visual performance for the
adapting stimulus, or it can leave performance intact, or it can change
performance for stimuli very different from the adapting ones.

Neurons are the major cell type in
the brain involved in neuronal com-
munication and computation. Signals
are communicated electrically within a
neuron via progressive changes in the
voltage difference between the inside
and outside of the cell. Signals are com-
municated chemically between neurons
via the release of neurotransmitters
into the synaptic cleft (the microscopic
space between neurons), which in turn
activate receptors on the next neuron in
the sequence. There are approximately
one hundred billion neurons in the
human brain.

We proposed that the previous results can be explained by tak-
ing an economic perspective on neural function. According to this
view, visual adaptation is mediated by reallocation of limited neural
resources over a broad range of visual stimulation, i.e., by changing
the tuning of multiple neurons in the visual cortex. The reallocation
is expected to cause gains and losses of sensitivity by neurons tuned
to different stimuli. Using a normative theory of neural resource
allocation, we predicted that sensitivity changes should form a lawful
pattern of gains and losses of sensitivity.

Psychophysics is the scientific study
of the relationship between physical
and mental phenomena. Sensory
psychophysics concerns the relationship
between the physical patterns (called
"stimuli") that activate the observer’s
neural system, on the one hand, and the
sensations elicited by the stimuli, on the
other hand.

We have tested these hypotheses behaviorally using new psycho-
physical methods that allowed us to assay sensitivity rapidly across
a wide range of spatiotemporal stimuli. Statistics of stimuli were
varied such that different speeds were prevalent on different days
of the experiment. We found that the change of stimulus statistics
caused a large-scale reorganization of sensitivity: an orderly pattern
similar to that predicted by the theory of adaptive reallocation of
neural resources.

The economic theory predicts that the expected change of sensiti-
vity for individual neurons depends on where their tuning falls
on the behavioral sensitivity function. We consider the possibility
that such changes can be implemented in multiple neurons by
means of mutually independent stochastic adjustments of synaptic
weights. This mechanisms will require no coordination between the
changes in neurons tuned to very different stimuli, similar to the self-
organizing process of "swarm intelligence" found in many biological
systems.
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2. The puzzle of visual adaptation

2.1 Adaptation

Figure 1: Speed adaptation in corti-
cal area MT (Krekelberg et al., 2006)
Neuronal speed discriminability
before (abscissa) and after (ordinate)
adaptation. Asterisks indicate neurons
for which adaptation was significant.
The symbols (points and asterisks)
above and below the diagonal represent
neurons whose discriminability was
respectively improved or impaired by
adaptation.

Visual adaptation is one of the most striking and well-studied of
visual phenomena (Mather et al., 1998). Yet the mechanisms under-
lying adaptation remain elusive and the evidence for it controversial.
Until recently, adaptation was viewed as a manifestation of neural
fatigue. The contemporary view is more pragmatic; it holds that
adaptation is a response of the organism to changes in statistics of
stimulation (e.g., Sakitt & Barlow, 1982). Adaptation is taken to man-
ifest an optimization of the organism’s perceptual abilities under
changing stimulation. But evidence supporting this view is scarce
and inconsistent. For example, some studies of adaptation to mov-
ing patterns have shown that speed discrimination performance
improves for speeds similar to the adapting speed, but other studies
have reported the opposite. Even more surprising are systematic
changes in discrimination for stimuli that differ from the adapting.
Previous theoretical efforts have failed to provide a comprehensive
explanation for these findings.

Neurophysiology is the scientific
study of the normal mechanisms of
neural systems. Neurophysiological
studies of visual systems reveal the
types of signals carried by neurons
and the manner in which those signals
are transformed in service of specific
visual tasks, such as detection and
discrimination of optical signals. It is
useful to distinguish neurophysiology
from neuroanatomy. The latter is the
study of the structure of neural system,
made possible by methods for selective
visual labeling of brain tissue. The
labeling provides a picture of neurons
as well as a picture of the wiring
diagram of neuronal connectivity.

Inconsistency is also a property of data obtained in neuro-
physiological studies of speed adaptation. Consider, for example,
the study of neurons in cortical visual area MT following a brief
motion adaptation by Krekelberg et al. (2006). Their main result is
summarized in Fig 1. Adaptation was found to reduce firing rates
and to alter speed discriminability. These effects were puzzling
in two ways. First, the effect of adaptation on response rate reduc-
tion was often greatest when the adapting speed was different from
the preferred speed of the cell. Second, only some cells showed im-
proved speed discriminability, while discriminability by many other
cells was impaired.

In the following we describe an attempt to solve the puzzle of mo-
tion adaptation from the perspective of neural economy. We consider
one of the most studied forms of motion adaptation, quantified in
terms of visual contrast sensitivity.

2.2 Contrast sensitivity

Contrast threshold. Stimulus
contrast is the difference in luminance
or color between the least intensive and
most intensive parts of the stimulus.
(See "Psychophysics" on page 3 for defi-
nition of "stimulus.") Contrast threshold
is the lowest value of stimulus contrast
that elicits a sensation.

There are many ways to quantify visual sensitivity (e.g., Robson,
1966, 1993; Nakayama, 1985; Watson & Ahumada, 2016). Perhaps the
most comprehensive and systematic of these methods is the one de-
veloped by Kelly (1979), illustrated in Fig 2A. Sensitivity in this case
reflects contrast threshold for pattern detection as a function of
spatial and temporal frequencies of stimuli, (sf,tf).

We will describe a theoretical approach to understanding the
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Figure 2: Spatiotemporal sensitiv-
ity functions. (A) Plot of luminance
contrast thresholds as a function of
(sf,tf) (Kelly, 1979b). The heavy line
represents maximal sensitivity at every
speed, and the contours represent
equal increments of log sensitivity.
(B) Simulation of (sf,tf) sensitivity for
speed discrimination, from principles
developed in our theoretical approach
(section Innovation). Our preliminary
measurements, using intensive psy-
chophysical methods, have yielded
a sensitivity function similar to that
obtained by Kelly, but with a greatly
reduced data collection.

forces that shape the distribution of visual sensitivity across stim-
uli (Fig 2A). From this perspective it follows that the distribution
of visual sensitivity, as well as diverse and seemingly inconsistent
transformations of sensitivity induced by adaptation, are manifes-
tations of efficient visual behavior. That is, adaptive changes reflect
optimization of visual performance with limited resources. We will
then show how this perspective entails specific predictions for the
distribution of visual sensitivity, i.e., how visual sensitivity should
change in response to changes in stimulation. The changes should
form a characteristic pattern across stimuli, including the previously
observed results as special cases. In particular, visual sensitivity
should either increase or decrease at the prevailing speed of stim-
ulation, depending upon the conditions of measurement. Also, the
changes in sensitivity should propagate, in a lawful manner, across
the entire stimulus space, including stimuli very different from the
adapting ones, as we explain next.

Spatial and temporal frequen-
cies of stimuli. Spatial frequency is a
characteristic of optical stimuli that are
periodic across space. It is a measure of
how often components of the stimulus
repeat per unit of distance. In vision
science, the unit of spatial frequency
is spatial cycle per degree of visual
angle (written as "c/deg" or "cyc/deg").
Similarly, temporal frequency is a
characteristic of optical stimuli that
are periodic across time. The unit of
temporal frequency is Hz, which is
temporal cycle per second.

3. Visual adaptation from a normative perspective

3.1 Neural economics

We present the economical approach using the plot introduced in
Fig 2A. Different points in the plot represent tuning parameters of
motion-sensitive neurons (Albright, 1984) at the peak of their sen-
sitivity. The parallel lines are constant-speed lines ("speed lines").
Each such line comprises points at which the ratio of temporal

frequency to spatial frequency (i.e., the speed) of stimulus is
constant. Low speeds appear at bottom right of the plot and high
speeds at top left.

Normative theory. A theory is nor-
mative when it specifies optimal per-
formance of a system in view of system
limitations (constraints). "Normative" is
often contrasted with "descriptive." A
theory is descriptive when it specifies
the actual performance of the system.

Gepshtein et al. (2007) developed a normative theory of mo-
tion estimation that allowed them to derive optimal conditions for
estimating every speed. Under these conditions, the uncertainties as-
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sociated with measurements of different stimuli are balanced.2 Each 2 These uncertainties concern location
and frequency content of stimuli,
defined according to the information
theory of Gabor (1946), detailed in
Gepshtein et al. (2007).

optimal condition is represented by a point on the corresponding
speed line. Such points for all speeds collectively form an "optimal
set," represented in Fig 3 by the red curve. According to this norma-
tive theory, the optimal set has the invariant form of a rectangular
hyperbola.

From the theory it also follows that the location of the optimal set
in the (sf,tf) parameter space depends on the statistics of stimulus
speed (Fig 4). For example, suppose that in the natural environment
the prevailing speed is low (Weiss et al., 2002), indicated in Fig 4A
by the oblique red line. Then suppose that the environment changed
and the prevailing speed has increased (oblique green line). The con-
ditions at which the system has greatest sensitivity (the optimal set)
is predicted to change, which can be summarized as a shift (a transla-
tion) of the optimal set in the (sf,tf) parameters space, as follows.

In Fig 4A, the directions of displacement of optimal points along
two speed lines are shown by arrows. For the two indicated speeds,
the optimal points are predicted to shift in opposite directions:
toward lower spatiotemporal frequencies at the low speed, and
toward higher frequencies at the high speed. Thus, whether sensiti-
vity grows or decays at a given location depends on whether the
optimal point moves toward or away from that location. There also
exist conditions where sensitivity is expected to remain unchanged,
e.g., where the new and old optimal sets intersect and the optimal
point does not move.

Figure 3: Optimal sets for speed esti-
mation. Oblique lines correspond to
different speeds ("speed lines"); they are
parallel to one another in the logarith-
mic coordinates. Speed (v=tf/sf) grows
from bottom right to top left of plot.
Points predicted to be most suitable for
estimation of every speed form a set
represented by red curve: the optimal
set of speed estimation. According to
Gepshtein et al. (2007) the optimal set
has an invariant shape, approximated
by a rectangular hyperbola. Position
of optimal set in the plot depends on
prevailing speed of stimulation: the
"expected speed" (Fig 4).

This illustration makes it clear that an adaptation experiment can
lead to qualitatively different outcomes depending on the conditions
at which motion sensitivity is measured, as shown in Fig 4B. Sensiti-
vity may increase (points 1 & 6), decrease (2 & 5), or not change at
all (3 & 4). Paradoxically, it is predicted that sensitivity changes that
make the system behave optimally as a whole can lead to sensitivity
losses at the currently prevailing speed (point 2). Notice also that

Figure 4: Predicted effects of speed
adaptation for optimal conditions.
(A) Changes in statistics of stimulation
lead to displacement of optimal set for
speed estimation: from red curve (low-
speed context) to green curve (high-
speed context). (B) In effect, different
sensitivity changes are expected across
the parameter space. Numbered disks
mark locations of qualitatively different
consequences of adaptation.
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Figure 5: Predicted effect of adapta-
tion for the entire parameter space.
(A-B) Predicted distributions of sensi-
tivity in stimulus environments with
high (A) and low (B) prevailing speeds.
In both panels, warm colors indicate
high sensitivity and cool colors indicate
low sensitivity (normalized for this
figure). (C) Predicted change map.
Entries in C are 100*(B-A)/A, where A
and B are entries in sensitivity maps
of panels A and B. Here, shades of red
indicate gains of sensitivity and shades
of blue indicate losses of sensitivity

optimization can lead to large sensitivity changes (gains and losses)
far away from the prevailing conditions (points 5 & 6). It is expected
that the shift of the optimal set is accompanied by sensitivity changes
over the entire parameter space, as shown in Fig 5. Figs 5A-B are
theoretical distributions of sensitivity in, respectively, high-speed and
low-speed environments. Fig 5C is a map of sensitivity change: the
shades of red and blue indicate stimulus conditions where sensitivity
is expected to increase and decrease.

It is convenient to think of the predicted gains and losses of sen-
sitivity as foci of change formed around branches of the optimal set.
Recall that this set resembles a rectangular hyperbola (similar to the
curve "max" in Fig 2A). Shifts of this hyperbola create systematic
changes across the (sf,tf) plot summarized in Fig 5. This hypothesis is
supported by the experiments described in Section 4.

3.2 The theoretical context

Theories of perception based on the statistical decision theory, in-
cluding Bayesian theories, (Knill & Richards, 1996; Simoncelli &
Olshausen, 2001; Maloney, 2002) also predict that stimulus statistics
affect perception. Here, probabilities of sensory estimates (likelihood
functions) and the probabilities of corresponding parameters in the
stimulation (prior distributions) are combined by point-by-point mul-
tiplication, following the Bayes’ rule, making the prevalent stimuli
more likely to be seen than the less common stimuli.

To illustrate differences of our approach from the above frame-
work, consider a study of motion adaptation by Stocker & Simoncelli
(2006). As it is common in the Bayesian framework, the authors rep-
resented effects of adaptation by changes in the prior distribution.
The model predicted that adaptation would cause increased simi-
larity ("attraction") of stimuli to the adaptor. Experimental results
showed the opposite: a reduced similarly ("repulsion") of stimuli
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to the adaptor (e.g., Barlow, 1990). To remedy the discrepancy, the
authors modeled adaptation by adjusting the likelihood function,
rather than the prior distribution. They proposed that "adaptation
acts to allocate more resources to the representation of the parameter
values in the vicinity of the adaptor ... resulting in a local increase
in the signal-to-noise ratio" thus broadening the likelihood function
because the resources are withdrawn from conditions removed from
the adaptor. Repulsion is caused by the broadening of the likelihood
function. The authors had to step outside of the standard Bayesian
framework and make an assumption for which they had no prin-
cipled theory. We would like to contrast their approach with the
normative approach presented here, which offers an explicit princi-
pled theory that predicts just how a visual system should reallocate
its resources in response to changes in stimulus statistics.

4. Adaptive transformation of sensitivity

The formulation of spatiotemporal sensitivity by Kelly (introduced in
Fig 2) reflects contrast thresholds for pattern detection as a function
of (sf,tf). Nakayama (1985) reviewed multiple other formulations and
concluded that "seemingly very different phenomena: [motion after-
effect], pattern detection and direction discrimination, fit a similar
set of functions." In other words, the data represented as sensitivity
over (sf,tf) all have the general "bent-loaf" appearance reported by
Kelly. We chose to assess spatiotemporal contrast sensitivity using a
direction discrimination task because it helped to avoid the response
biases characteristic of detection tasks.

Figure 6: Stimulus grid and statistics
for adaptation experiments. Disks rep-
resent stimulus conditions arranged on
seven constant-speed lines in domain of
spatiotemporal sensitivity function (the
"stimulus space"). Two complementary
histograms at top right illustrate "stim-
ulus contexts." In low-speed context,
low speeds are sampled more often.
In high-speed context, high speeds are
sampled more often. Mean speeds of
contexts are 6 and 12 deg/s.

To study how stimulus statistics affect the distribution of con-
trast sensitivity, we created two stimulus contexts as shown in Fig
6. We varied how often stimuli were sampled from the same stim-
ulus grid, creating two contexts: low-speed and high-speed. We
deployed a "quick" method for assessing the Contrast Sensitivity
Functions (quick CSF or qCSF) developed by Lesmes et al. (2010;
also see Lesmes et al., 2009; Pawar et al., 2013) by generalizing
previous procedures for rapid estimation of sensory performance
(PSI method by Kontesvich & Tyler, 1999; also Cobo-Lewis, 1997;
Kujala & Lukka, 2006).

Examples of sensitivity functions obtained this way are displayed
in Fig 7A. Sensitivity changes are plotted (for one subject) in Fig 7B:
for two speeds at top and for the entire domain of the sensitivity
function at bottom. As in theoretical change map (Fig 5B), sensitivity
changes were di = 100(hi - li)/hi, where hi and li are respective entries
in the high-speed and low-speed sensitivity function. (Change maps
for all subjects appear in Fig S2 in Gepshtein et al., 2013.)
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The plots in the upper part of Fig 7B demonstrate a reversal of
sensitivity change across speeds, as predicted by our theory (Figs 4–
5). At the low speed, sensitivity decreased for low frequency con-
ditions and increased for high frequency conditions. At the high
speed, the pattern was reversed. The seemingly erratic alterations of
sensitivity within the narrow samples of stimulus conditions corrobo-
rate the notion that changes of sensitivity must be studied over large
stimulus sets.

We evaluated patterns of sensitivity change across full range of
(sf,tf) using templates of sensitivity change. The templates consisted
of regions where gains and losses of sensitivity were predicted by the
theory. We also compared the observed patterns of change to predic-
tions of an alternative theory in which changes of sensitivity merely
mirrored changes in stimulation. This analysis overwhelmingly sup-
ported our predictions, described in detail in Gepshtein et al. (2013).

5. Neural mechanisms of adaptation

5.1 Approach

Our analysis of factors that control contrast sensitivity and the re-
sults of our psychophysical experiments (Gepshtein et al., 2013)
demonstrate that local changes of sensitivity appear paradoxical
when viewed in isolation but make sense in a larger context. These
discoveries lead us to ask how multiple local changes are coordinated
across the vast domain of visual sensitivity. Do visual systems mon-
itor the distribution of stimuli? Is there a mechanism dedicated to

Figure 7: Results of a large-scale assay
of sensitivity change. (A) Contrast
sensitivity functions measured in two
stimulus contexts for one S. Standard
model of contrast sensitivity (Kelly
function) was fitted to estimates of
sensitivity in high-speed (top) and
low-speed (bottom) contexts. Warm
and cool colors represent high and
low sensitivities. (B) Change map at
bottom summarizes how sensitivity
changed from the low-speed to high-
speed stimulus contexts. Shades of red
and blue represent gains and losses of
sensitivity; white regions represent no
change. At top samples of sensitivity
changes for two speeds demonstrate
that pattern of gains and losses of
sensitivity is reversed across speeds,
similar to prediction shown in Fig 5.
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Figure 8: Predicted effects of speed
adaptation on sensitivities of individual
cortical neurons. Top row of panels il-
lustrate global (sf,tf) "sensitivity maps."
(A) Pre-adaptation state depends upon
distribution of speeds in the natural
world (Dong & Atick, 1995). (B) Ex-
pected sensitivity following adaptation
to 1.2◦/sec (speed indicated by diagonal
line). (C) Sensitivity following 8

◦/sec.
As adaptation speed increases, global
pattern of sensitivity retains "bent loaf"
shape but shifts markedly. Middle row
of panels (D, E, F) illustrate fractional
change in global sensitivity at indicated
speeds (in D, change is nil, by defini-
tion). In panels A-F we have indicated
preferred (sf,tf) values for three hypo-
thetical MT neurons. Predicted changes
in neuronal sensitivity as a function
of adapting speed are summarized for
each of the three neurons in panels 1-3,
at bottom. See text for further detail.

coordinating the distribution of sensitivity?
Our general prediction is that responses of individual neurons

(assessed as in Thiele et al., 2000) will reflect changes of sensitivity
discovered using psychophysical methods. Because the operating
range of the (sf,tf) function for a given neuron will generally cover
only a small portion of the behavioral (sf,tf) range, the predicted
changes of the neuronal CSF are likely to be evident by one or both
of: (1) the overall gain of the neuronal spatiotemporal frequency
tuning function may either increase or decrease, (2) the peak of the
neuronal (sf,tf) sensitivity function may shift. The study by Krekel-
berg et al. (2006) summarized in Fig 1 provided preliminary evidence
for both of these neuronal effects.

The general nature of predicted changes is illustrated in Fig 8.
Panel A portrays the global sensitivity function predicted for a low
prevailing speed of 0.1◦/s. Suppose that we record three MT neu-
rons whose peak (sf,tf) preferences lie at the locations indicated by
nodes À, Á, and Â. Neurons Á and Â lie near the peak of sensitivity,
while neuron À lies at a point of low sensitivity. Global effects of
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adaptation on sensitivity are illustrated in panel B: The sensitivity
function has shifted slightly relative to its position in panel A. Panel
E illustrates change in sensitivity from A to B. Neuron Á is expected
to undergo a decline in sensitivity, while neurons À and Â are ex-
pected to become more sensitive.

Similarly, panel C portrays the sensitivity function predicted for
the prevailing speed of 8

◦/s, and panel F portrays the corresponding
change in sensitivity. Sensitivities of the three neurons change: a
marked increase for neuron À, a substantial loss for neuron Á, and
little change for neuron Â.

Predicted sensitivity changes for these neurons are summarized
at bottom of Fig 8. The horizontal axis in each figure indicates the
prevailing speed; the vertical axis indicates sensitivity change. These
simulations lead to the provocative prediction that sensitivity of
individual neurons should change as a function of adaptation fol-
lowing a highly principled rule, in which the sensitivity change for
a given neuron depends upon its position relative to the behavioral
sensitivity change map. The second possibility (hinted at by results of
Krekelberg et al., 2006) is that psychophysical changes of sensitivity
will be correlated with shifts of neuronal preference (not shown).

Receptive field is the part of sensory
space that, when stimulated, leads to a
change in the activity of a sensory neu-
ron (a neuronal response). In the case
of vision, the receptive field of a neuron
is defined by the region of visual space
that, when stimulated, activates the
neuron, and by the sensory attributes
of the activating stimulus, such as its
spatial or temporal frequency (see the
previous entry) or direction of motion.

To understand the factors that control the distribution of neuronal
sensitivities we investigated how basic mechanisms of synaptic plas-
ticity in single cells respond to changes of stimulation within their
receptive fields (RFs). We pursued two specific goals: first, to
characterize local changes of sensitivity and, second, to investigate
the global distribution of these changes across the entire stimulus do-
main. Next we describe numerical simulations of synaptic plasticity
in spiking neural networks performed by in pursuit of both goals
(Jurica et al., 2013; Gepshtein, 2014).

Spiking. A brief stereotyped neuronal
signal is called formally an "action
potential" and informally a "spike."
An action potential typically sweeps
from the cell body along the length of
the output process (axon) of a neuron.
This neuronal signal results from a
rapid, active, and propagating exchange
of ions across the cell membrane.
Neuronal communication is mediated,
in part, by the frequency of action
potentials (the frequency of neuronal
"spiking"). Simulations of neuronal
activity in artificial neural networks
are more realistic when they represent
neuronal activity in terms of spiking,
i.e., using the so-called "spiking neural
networks."

5.2 Basic neural circuit

Fig 9A is a diagram of the generic circuit used in simulations of
synaptic plasticity. The circuit consists of one readout cell R and
two input cells I1 and I2. Input cells have receptive fields of different
sizes on a single dimension x.3 The receptive field size of I2 is larger 3 This dimension could be space or

time. For example, when x represents
space, the larger number of lower-level
cells (from which the cell I receive
information) corresponds to a larger
receptive field size of I.

than that of I1.
The receptive field size of the readout cell (Sr) depends on the

synaptic weights (w1 and w2), which determine which of the input
cells has a larger effect on R. For example, when w2 > w1, the size
Sr is similar to the size of I2 (i.e., is larger than in the cases when
w1 = w2 or w1 > w2). Substantial changes in the weights w1 and w2

will entail changes in the receptive field size of R.
The weights w1 and w2 depend on the relative timing of presy-
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naptic and postsynaptic spiking (Bienenstock et al., 1982; Paulsen &
Sejnowski, 2000; Bi & Poo, 2001). When one of the input cells (presy-
naptic) and the readout cell (postsynaptic) co-fire, the corresponding
weight increases. For example, when the cells I2 and R co-fire more
often than the cells I1 and R, the weight w2 increases more often
than the weight w1. In that case, the receptive field size of R becomes
larger, i.e., more similar to the size of I2 than I1.

Figure 9: Generic neural circuit. (A) Cir-
cuit consists of two input cells (I1 and
I2) and one readout cell R. The recep-
tive field (RF) size of I1 is smaller than
of I2 (represented by the number of
lower-level cells from which it receives
information: three such cells for I1 and
seven for I2). The RF size of readout
cell (Sr) depends on weights w1 and w2.
(B) The weights are updated according
to the stochastic co-activation of input
and readout cells. Readout RF size Sr
fluctuates on the interval between the
sizes of input cells (here normalized to
1 and 2). The histogram of Sr reveals
the central tendency of the fluctuation.
p(Sr) is the probability of Sr . (C) Small
circles represent average changes of Sr
(i.e., the amplitude of RF size fluctua-
tion) for different magnitudes of Sr . The
farther Sr is from its central tendency
the larger the amplitude.

5.3 Receptive field dynamics

Because neuronal firing is a stochastic process, updating of synaptic
weights is also a stochastic process that leads to temporal fluctu-
ations of readout RF size. In Fig 9B-C we illustrate two important
features of these dynamics. First is the central tendency of readout
RF size. The fluctuations of readout RF size are confined to the in-
terval between the smallest (blue) and largest (red) input RF sizes.
Probabilities of readout RF sizes over the course of one simulation are
captured in the histogram in Fig 9B (see Jurica et al., 2013 for details).
The peak of the histogram in Fig 9B corresponds to the most likely
readout RF size (S∗

r ): the central tendency of readout RF fluctuation.
The second important feature of readout dynamics is the ampli-

tude of fluctuations (Fig 9C). The amplitude is low when the readout
RF size is similar to S∗

r and it is larger when readout RF size is re-
moved from S∗

r . We illustrate the consequences of these dynamics in
Figs 10-11.

Our numerical simulations of synaptic plasticity revealed that
fluctuations of RFs are biased by stimulation. The dynamics are best
described as drift of the readout RF in (sf,tf) space, where drift direc-
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tion is determined by local stimulus statistics. In Fig 10, we illustrate
this drift in a circuit of 25 input cells and one readout cell.

Figure 10: Stochastic tuning of one
receptive field. (A) Outcomes of 1,000

simulations for one readout cell and
25 input cells. The two dimensions
represent spatial and temporal sized
of receptive fields (RF) normalized so
that the initial RF size of the readout
cell corresponds to (0, 0) marked by
the white cross. In each simulation,
input-readout weights were updated
700 times. Final parameters of each
readout RF are represented by a red
dot ("endpoint"). Twenty steps for three
of these simulations are illustrated
by the gray-arrow trajectories. The
contour plot in the background is
the average amplitude of fluctuation:
a two-dimensional generalization of
the curve in Fig 9C. The inset in A
is a histogram of endpoint density
plotted as a heat map: the warmer the
color the higher endpoint density. The
central tendency of fluctuation (the
peak of endpoint density) is marked
by the intersection of while gridlines
in the inset and by the asterisk in
the main plot. (B-D) Stimulus bias.
Mean speeds of stimuli were low in B,
intermediate in C, and high in C. The
bottom histograms depict endpoint
density (as in the inset of A). They
show that outcomes of RF fluctuation
are biased by the stimulation. The
directed yellow markers in top panels
point in the direction of RF drift: from
the initial condition (central disk) to
mean endpoint. These markers are used
in Fig 11 to summarize drift of readout
RFs across (sf,tf) space.

First consider panel A, where the stimulation was uniform. The
central white cross identifies the initial parameters of the readout
RF for every simulation. Each red point corresponds to the readout
RF parameters after one of 1,000 simulations. The distribution of
endpoints (summarized in the inset) is an outcome of correlation
between the amplitude of RF fluctuation and the proximity of RF
parameters to the central tendency of fluctuation.

Stimulus statistics change the central tendency of fluctuation and
thus bias the direction of RF drift. Results in Fig 10B-D were obtained
under different stimulus statistics, biased towards low (B), intermedi-
ate (C), or high (D) speeds. Direction of RF drift is different in these
cases, represented by the directed markers on top of panels B-D.

Notice that stimulus dimension x in Fig 9A could stand for either
location or frequency content of the stimulus. We introduced the
circuit in terms of RF size (i.e., assuming x was location), to help
intuition and to follow Jurica et al. (2013). The two-dimensional gen-
eralization in Fig 10 followed the same convention. In what follows
we present results of our simulations of RF plasticity in the frequency
domain because our present stimuli are defined by frequencies of
luminance modulation and because we study effects of adaptation
on contrast sensitivity, which is traditionally rendered in the fre-
quency domain.

In Fig 11 we summarize RF dynamics for multiple locations in
(sf,tf) space. The simulations were performed as in Fig 10, except the
parameters of input RFs and the stimuli were selected according to
the location in the (sf,tf) space, as described in Jurica et aI. (2013). The
initial condition for every simulation is indicated by a point and the
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direction of RF drift is indicated by a line. The flow pattern in Fig 11

is a result of the different biases of RF fluctuations created by the
different stimulus conditions in different parts of the (sf,tf) space.

Figure 11: Pattern of receptive field
drift across (sf,tf). The same simulations
as in Fig 10 were performed at multiple
(sf,tf) condition. Local drift directions
are represented by the markers intro-
duced in Fig 10B-C. These directions
form a systematic global pattern. These
results suggest that the globally optimal
receptive field allocation predicted by
the theory of Gepshtein et al. (2008) can
be achieved by local means alone, re-
quiring no mechanism that coordinates
the local processes. (The white curve
is the sum of conditions on which the
local processes converge yielding the
highest RF density.)

This analysis predicts that the adaptive changes of individual
neurons should follow a regular pattern determined by the local
stimulus statistics. When stimulus statistics change, it is expected
that the distribution of sensitivity will change too (not shown in
Fig 11). We have performed simulations of such changes of neu-
ronal tuning using the same manipulation of stimulus statistics as
in our psychophysical experiments (Fig 6). We found that adaptive
changes form a global pattern consistent with both the theory of
RF allocation (Figs 4-5) and results of our psychophysical experi-
ments (Fig 7) (Gepshtein et al., 2012). Now we pursue a program
of studies aimed to test the hypothesis that changes in the popu-
lation distribution of sensitivities of motion-sensitive neurons in
cortical area MT reflect the changes in the distribution of behavioral
spatiotemporal sensitivity.

6. Conclusions

The significance of this work is both theoretical and empirical. These
studies implement a new way of thinking about sensory adaptation
as an economic optimization of the visual system through realloca-
tion of limited neuronal resources. This approach has inspired us
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to do new kinds of experiments and look at the results of these and
other experiments from a new principled perspective. We pointed out
that adaptive changes of sensitivity appear paradoxical from a local
perspective, i.e., by studying sensitivity in narrow bands of stimulus
parameters. The paradox is resolved by taking a broader perspective,
i.e., by studying the distribution of sensitivity across a broader range
of spatiotemporal conditions.

The broader perspective also points to new questions about the
mechanisms of neuronal change. We have described a model of how
the synaptic plasticity could implement tuning changes of individual
cells. The model suggests that changes should follow a regular pat-
tern: peak sensitivities of cells should follow different paths in differ-
ent parts of the space of RF parameters, while the directions of these
paths should form a gradient across RF parameters (Gepshtein, 2014).
We expect that the sensitivity changes of individual cells will form a
global pattern consistent with our predictions. Forthcoming studies
will show whether this prediction holds.
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