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ABSTRACT 

The proximity principle is a fundamental fact of spatial vision. It has 
been a cornerstone of the Gestalt approach to perception, it is 
supported by overwhelming empirical evidence, and its utility has been 
proven in studies of the ecological statistics of optical stimulation. We 
show, however, that the principle does not generalize to dynamic 
scenes, i.e., no spatiotemporal proximity principle governs the 
perception of motion. In other words, elements of a dynamic display 
separated by short spatiotemporal distances are not more likely to be 
perceived as parts of the same object than elements separated by longer 
spatiotemporal distances. 

The Proximity Principle 

The proximity principle, advanced by the Gestalt psychologists as one of a few 
foundational perceptual facts, has been a staple of the study of perceptual or-
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ganization. It is an empirical law that holds in the perception of static scenes 
(Hochberg & Silverstein, 1956; Kubovy, Holcombe, & Wagemans, 1998; 
Kubovy & van den Berg, 2008; Oyama, 1961; Wertheimer, 1923): the closer 
elements of a scene to one another, the more likely it is that they will appear to 
belong to the same object. Studies of the statistics of natural images have re-
vealed its ecological utility: image regions (or elements) that correspond to the 
same object are likely to be closer to each other than elements that correspond 
to different objects (Brunswik & Kamiya, 1953; Elder & Goldberg, 2002; 
Geisler, Perry, Super, & Gallogly, 2001; Martin, Fowlkes, Tal, & Malik, 
2001). 

We illustrate the proximity principle in Fig. 1a using a regular array of dots 
called a dot lattice (for the nomenclature of dot lattices, see Kubovy, 1994). 
Any dot of the lattice is surrounded by eight neighbors at four different dis-
tances from it, shown by the four red arrows in the figure, and labeled by low-
er–case bold letters,  , . . . ,   (which we simplify by introducing generic vec-
tor   for vectors other than  :   ∈ {  ,  ,   . Lengths of these vectors are              
| |≤| | ≤ | |≤ | |. 

                     

    (a) A dot Lattice                                                                       (b) An attraction function 

Figure 1. Perceptual grouping in spatial dot lattices. 

Dot lattices can be seen organized into strips along  ,   ,  , or  . If 
| |/|  |   1.5, the lattice is multistable; the perceived organizations are in 
competition and they can spontaneously change (or can be voluntarily 
changed) even though the stimulus does not. If we wish to preclude such 
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changes during a single viewing of a dot lattice, we can show it for 300 ms or 
less, too short for a reorganization to occur. Nevertheless, it is still multistable: 
the same stimulus is seen differently on different presentations. 

Kubovy and Wagemans (1995) and Kubovy et al. (1998) manipulated 
| |/| | and γ in briefly–exposed dot lattices, and asked observers to report 
their organization. Fig. 1b shows schematic data for such an experiment. We 
denote the four possible responses by lower–case italic letters,  , … ,   and a 
generic response by   (where  ∈        ). The  -axis of this figure 
is| |/| |, and the  -axis is                (i.e., the log–odds of respond-
ing   rather than  ). 

The figure shows the results for two dot lattices, denoted lattice 1 and lat-
tice 2 (whose | |/| | and γ values are shown in the inset). We first consider 
the b responses. Recalling that in lattice 1, | |/| |=1.1 and in lattice 2, 
| |/| |=1.2, we mark their locations on the | |/| | axis. The frequency 
of b responses relative to the frequency of   responses for each lattice is 
represented by blue data points, which show the corresponding values 
of               . 

We then consider the   responses. In lattice 1,              ; in lattice 
2, | |/|  |=1.39. The brown data points show the corresponding values of 
                Turning to the   responses, the purple data points show the 
corresponding values of                 Finally, there is one point for which 
we don’t need data: when          , is it inevitable that          
     =0 (the black data point), because     =      when          

                           
 
 
 

(a) Competing organizations are seen 
equally often if the distances that define 
them, | |and | |are equal. 
 

(b) When   is rotated to obtain    and vice-

versa, their projections on the axes tradeoff 
their lengths. 
 Figure 2. Tradeoff of spatial distance components. 
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It is striking that all these data points are aligned on a single straight line, 

known as the attraction function, which shows that grouping by proximity fol-
lows a pure–distance law. This means that grouping by proximity is determined 
by the three distance ratios | |/| |, | |/| |, and | |/| |, and that it is 
unaffected by the symmetries of the lattice (as described by Kubovy, 1994). As 
Kubovy et al. (1998) show, this means that the organization of dot lattice can 
be modeled as if it were a collection of unconfigured dots in an isotropic Carte-
sian space. 

Tradeoff of Distance Components 

The proximity principle implies the tradeoff of distance components. To ex-
plain this concept we consider a dot lattice in which | |=| |(Fig. 2a); as we 
have seen, this means that     =     . In Fig. 2b, we show the vectors in a 
Cartesian plane with coordinates   and   (Fig. 2a). The projections of   and   
onto the  –axis are    and    and onto the  –axis are     and      There are 
two ways to visualize a transformation that will turn   into   and   in to  : (a) 
A clockwise rotation of   by γ and a concurrent counter–clockwise rotation of 
 , also by γ. (b) A tradeoff between the lengths |  | and |  |, and a concur-
rent tradeoff between |  | and |  |. The latter is called the tradeoff of dis-
tance components (Appendix A). 

We now ask the same question about space–time. Suppose one of the two 
dimensions in Fig. 2b is time. To preserve an equality of distances in space–
time, the spatial and temporal components of spatiotemporal distance must 
trade off, just as they did in space: an increment or decrement in the spatial 
distance between elements must be accompanied by a decrement or an incre-
ment in temporal distance. 

Such a tradeoff was found by Burt and Sperling (1981): the longer they 
made the spatial gap between dots, the more they had to shorten the temporal 
interval between dots for apparent motion to be seen. In contrast, however, 
according to Korte’s Third Law of Motion (Korte, 1915; Koffka, 
1935/1963), the larger the spatial gap between alternating lights, the slower 
the rate at which they need to be flashed in alternation for apparent motion to 
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be seen. Koffka (1935/1963, p. 293) himself found this result counterintui-
tive: 

                  
 
 
 
 

 

Figure 3. Tradeoff  and coupling of spatiotemporal distance components. 

[…] when Korte and I discovered it, I was surprised […]: if one separates the 
two successively exposed objects more and more, either spatially or temporal-
ly, one makes their unification more and more difficult. Therefore increase of 
distance should be compensated by decrease of time interval, and vice versa. 

In an attempt to resolve these inconsistent results, Gepshtein and Kubovy 
(2007) devised the following procedure. Three short-lived dots, O, a, and b, 
appear and disappear sequentially at three locations in space (Fig. 3a). Nothing 
prevents us from seeing apparent motion O→a or O→b. (The distance be-
tween a and b is too long for a→b.) We call the O→a motion   , and the 
O→b motion   . Each of these has a temporal and a spatial component: (    
   ) and (  ,    ). This allows us to represent each motion as a point in a plot of 
distances (Fig. 3b). 

Why did Korte’s law puzzle psychologists while the result of Burt and 
Sperling does not appear surprising? It is probably because space-time coupl-
ing contradicts the widespread intuition of distance: the fact that to preserve 
distance its components must tradeoff (Appendix B). 

(a) A stimulus for ambiguous apparent motion. 
Element O has two potential matches, a and b, 
giving rise to potential motion paths    and 
    
 
 

(b) Procedure to find the equilibrium between 
competing motion paths    and   . Each 
motion path is represented by a coordinate in 
time-space, (  ;   ); where   ∈ {   }. The 
double-headed arrow represents the manipula-
tion of path O  . 
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b 

13 13 13 

If we allow    to vary (represented by the interval between ➊ and ➋ con-
nected by the double-headed arrow in Fig. 3b), while holding   ,     and     
constant, with the condition that     =     . We can vary    until we find a 
value    =   

  for which                In light of the previous literature, 
we pit two hypotheses against each other (an intermediate hypothesis is dis-
cussed in Gepshtein & Kubovy, 2007): 

 Space–time tradeoff  (  
    ), which supports the proximity principle 

in space-time (because         ). In Fig. 3b this result is represented 
by outcome ➊ where the line connecting the conditions of equilibrium 
has a negative slope. 

 Space–time coupling (  
     ), where the proximity principle is not 

applicable. In Fig. 3b this result is represented by outcome ➋ where the 
line connecting the conditions of equilibrium has a positive slope. 

Using the manipulation represented by the double-headed arrow in Fig. 3b, 
Gepshtein and Kubovy (2007) varied     and   , as shown in the lower half of 
Fig. 4. The graphs are plotted as a function of motion speed (      ) in panel 
A and as a function of the reciprocal of motion speed, i.e., slowness (      ) in 
panel B. The response variable is the ratio    

  =   
      . When    

    1, we 
have space–time tradeoff, whereas when    

   1, we have space–time coupl-
ing. Since the functions in panels A and B cross the boundary    

   = 1, both 
tradeoff and coupling occur, depending on the speed (or slowness) of the mo-
tion. Tradeoff occurs at low speeds (i.e., at small spatial and large temporal 
distances), but as the speed is increased (i.e., toward large spatial and small 
temporal distances), eventually we observe coupling. 

In Fig. 5 we transfer the data of Fig. 4 to a representation similar to figure 
Fig. 3b. The thin lines on the background are the empirical equivalence con-
tours of apparent motion we derived from the pairwise equilibria. The slopes of 
these contours gradually change across the plot, indicating a gradual change 
from the regime of tradeoff (negative slope) to the regime of coupling (positive 
slope). That is, the results are consistent with the proximity principle at some 
conditions, where tradeoff is observed. But the results are inconsistent with the 
proximity principle at other conditions, where coupling is observed. 
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Figure 4. An idealized representation of the data of Gepshtein and Kubovy (2007). 
We jittered the ―data‖ points vertically to improve the legibility of the figure. 

 

 

Figure 5. Equivalence classes of motion per-
ception. The pairs of red connected circles 
represent the pairs of conditions of apparent 
motion that were seen equally often in the 
displays of Gepshtein and Kubovy (2007). The 
slopes of the lines connecting the equilibria are 
positive and negative in different parts of the 
parameter space. 
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Summary and Resolution 

The failure of the proximity principle in dynamic displays undermines its gene-
rality as a law of perceptual organization. The principle holds only when com-
ponents of distance between visual elements trade off to preserve strength of 
perceptual grouping. This requirement is not met in the perception of motion. 
When stimulus elements are separated by spatiotemporal distances, strength 
of grouping is preserved sometimes when the spatial and temporal distance 
components tradeoff, and sometimes when distance components are coupled: 
both increase or both decrease. 

This insight led us to ask what general characteristic of visual systems may 
supplant the proximity principle (Gepshtein, Tyukin, & Kubovy, 2007). We 
showed that the results summarized in Figs. 4–5 are predicted by two proper-
ties of visual systems: (a) intrinsic limitations of visual measurements (Gabor, 
1946; Daugman, 1985; Jones & Palmer, 1987) and (b) constraints on the 
number of measurements visual systems can perform concurrently. To account 
for the failure of the proximity principle, this point of view appeals to facts 
more basic and general than perceptual organization or perception of motion. 
Thus the tensions created by the apparent inconsistency of experimental find-
ings (Korte, 1915; Burt & Sperling, 1981), and the contradiction between 
experimental findings and one’s intuitive concept of distance (Korte, 1915; 
Koffka, 1935/1963) find a simple resolution. 

Appendix A. Decomposability of Distance Components 

We demonstrate that tradeoff of distance components is a necessary property 
of a proximity metric. As we illustrated in Figure 2, distances δ of   and b can 
be mapped onto each other by rotation while preserving distance equality. This 
property is called rotation invariance (a case of metric equivalence; Mendelson, 
1974). It holds in the familiar Euclidean metric. 

The Euclidean metric is a special case of the power metric. Although rota-
tion invariance does not generally hold in power metrics, the tradeoff of dis-
tance components does. The tradeoff follows from the decomposability proper-
ty of power metrics, according to which a distance function must be a strictly 
monotonically increasing function in each of its arguments (Suppes, Krantz, 
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Luce, & Tversky, 1989). To formalize this idea we write the distance between 
some space-time locations M and N as 

                   
             

                                        (1) 

where 

    and    are the spatial and temporal differences between locations M 
and N in space-time,   =| (  )   (  )|satisfying,   (     )> 
   (     ) whenever      , 

 ϕ is a real-valued function (the scale) that represents a mapping between 
a physical location and its perceptual counterpart, and 

     is an integer. 

We define function  : 

                                                                 (2) 

which must increase whenever    (  ,   )  or     (  ;   ) increases. Ac-
cording to decomposability, if one of the arguments of distance function (e.g., 
the  -projection in Figure 2b) increases, then distance is preserved only if the 
other argument (the  -projection in Figure 2b) decreases. If the second argu-
ment had not decreased, then the distance would necessarily have increased. 

We now apply this argument to the case of multistability in motion percep-
tion (Figure 3), where the spatiotemporal distances of competing motion paths 
are δ(  )and δ(  ). Let the spatial and temporal coordinates of points o,  , 
and b be (    ,     ), (    ,     ), and (    ,     ). Suppose that: 

1.    (    ,     ) =                                  and 
2.    (    ,     ) =                                       

 If paths   ,    are in equilibrium, we can apply Equation 2: 

  [     ] =  [            ].                                  (3) 

From decomposability it follows that whenever    > 0, the equilibrium of the 
two paths is possible only when     0. 

Thus, if the spatial proximity principle generalizes to space-time, under 
power metric (1) or its generalization (2), then a tradeoff of distance compo-
nents between the dimensions of space and time must follow. If in figure 2b we 
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interpret axis   as space, and axis   as time, then the lengths of spatial and 
temporal projections of perceptually equivalent spatiotemporal segments   
and   will trade off. Applied to the apparent-motion display in Figure 3b, Equ-
ation 3 becomes: 

         =                                                          (4) 

The equality of distances can be achieved only when       . 

Appendix B. Tradeoff of Distance Components 

As mentioned in Appendix A, the intuitive Euclidean metric is a special case of 
the power metric. Although rotation invariance illustrated in Fig. 2b does not 
generally hold in the power metric, the tradeoff of distance components does. 
The generality of this tradeoff follows from the decomposability property of the 
power metric (Suppes et al., 1989), according to which a distance function 
must be a strictly monotonically increasing function in each of its arguments. 

To see why tradeoff of distance components is a general property of the 
power metric, let                     be the function of distance be-
tween points (     ) and (     ). We shall only assume that  (·,·) satisfies the 
requirement of decomposability. Let us fix the initial distance between (     ) 
and (     ), and let 

  (|     |, |     | )   . 

Now consider another point, (  ,   ), such that                    
    and                  This means that one of the distance compo-
nents is increased but the distance between two points did not. 
Let       ≤        , which represents the hypothesis that the other 
distance component did not increase. From this we have, because of the de-
composability of   (·,·): 
 

                                             

≤                   , 
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which leads to a contradiction: 

                          

Hence, our hypothesis that        ≤         is false. That is,        , 
must be strictly larger than        . Hence the tradeoff of distance compo-
nents in the power metric. 
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