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Closing the gap between ideal
and real behavior: Scientific vs.
engineering approaches to
normativity

Sergei Gepshtein

Early normative studies of human behavior revealed a gap between the norms of

practical rationality (what humans ought to do) and the actual human behavior (what

they do). It has been suggested that, to close the gap between the descriptive and the

normative, one has to revise norms of practical rationality according to the Quinean,

engineering view of normativity. On this view, the norms must be designed such that they

effectively account for behavior. I review recent studies of human perception which

pursued normative modeling and which found good agreement between the normative

prescriptions and the actual behavior. I make the case that the goals and methods of this

work have been incompatible with those of the engineering approach. I argue that norms

of perception and action are observer-independent properties of biological agents; the

norms are discovered using methods of natural sciences rather than the norms are

designed to fit the observed behavior.

Keywords: Bayesian; Decision; Economics; Engineering; Haptics; Illusion; Normativity;
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1. Introduction

In 1964, George A. Miller, a proponent of mathematical thinking in psychology, had

the following to say of the relationship between normative and descriptive theories of

human behavior:
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For many years psychologists regarded the work of their economic colleagues as a
good example of bad psychology. Economists seemed too much concerned with the
rational and ethical problems of what people ought to do. Psychologists, fancying
themselves natural scientists, not logicians or moral philosophers, insisted on
searching instead for the laws that govern what people actually do. The vast gap
between what they actually do and what they ought to do is overwhelmingly clear
to everyone, so it seemed that the normative approach of the economist had to be
rejected a priori in psychology. . . . Beginning around 1950, however, the
psychological aspects of economic theory began to grow increasingly interesting
to many psychologists. (p. 32)

The tide noticed by Miller brought the normative approach into the

mainstream of psychology and neuroscience. Today, normative theories are routinely

used as testbeds for assumptions about biological mechanisms of sensorimotor
behavior, learning, and decision-making. Among the modern normative approaches,

the center stage is occupied by models based on the Statistical Decision

Theory (Geisler & Kersten, 2002; Green & Swets, 1966; Knill & Richards, 1996;

Maloney, 2002; Rao, Olshausen, & Lewicki, 2002) of which we will see several

examples below.

In a recent issue of Philosophical Psychology, Hardy-Vallée and Thagard (2008)
ponder Miller’s gap between what agents ought to do (the norms) and what they

actually do. The authors take a metanormative perspective. They ask a normative

question about building normative models: How ought one to choose norms for

evaluation of behavior? Hardy-Vallée and Thagard explore a prototypical case of

decision-making—the ultimatum game—and conclude that the traditional view

(the ‘‘standard picture’’) of rationality is incomplete because it lacks an adequate

account of effectiveness of norms. Effectiveness of norms is the degree to which

norms account for observed behavior. Hardy-Vallée and Thagard are concerned that

the effectiveness is generally assumed rather than evaluated, which on their view leads
to a distorted picture of rationality.

As an alternative to the standard picture of rationality, Hardy-Vallée and Thagard

defend an engineering approach, owing to the naturalistic epistemology of philosopher

Willard V. O. Quine who viewed normative theories as a branch of engineering

(Quine, 1986). From this perspective, norms must be selected (or perhaps designed) to
insure their effectiveness: ‘‘engineers do not build bridges or launch rockets, but spell

out what one should do in order to attain this goal’’ (Hardy-Vallée & Thagard, 2008, p.

180). From their explicit premise that engineering is normative and science is

descriptive, the authors maintain that an adequate account of rationality will emerge

from the engineering approach to normativity.
In this note I make the case that the concern about effectiveness of norms is

being answered by the modern normative approaches to human perception

and action, but the emerging answer is inconsistent with the engineering view

of normativity. I argue that norms of perception and action studied in the modern

work are observer-independent properties of biological agents: the norms are

discovered, as were the laws of classical physics; rather than the norms are fitted to

observed behavior, as statistical models are fitted to experimental data.
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2. Illusion of Irrationality

Before I turn to a broader topic of genesis of norms, I will scrutinize the belief that

errors of perception or judgment by biological agents necessarily manifest suboptimal

(irrational) behavior. This belief transpires in Hardy-Vallée and Thagard’s (2008)

discussion of how actual behavior can deviate from normative prescriptions. Central

to the authors’ argument is the distinction of external vs. internal rationality:

An ‘internal’ (or subjective) assessment of rationality is an evaluation of the
coherence of intentions, actions and plans. . . . An ‘external’ (or objective)
assessment of rationality is an evaluation of the effectiveness of a rule or
procedure. . . . An action can be rational from the first perspective but not from the
second one, and vice versa. Hence subjects’ poor performance in probabilistic
reasoning can be internally rational (subjects may have good reason to choose a
certain prospect) without being externally rational (their behavior is still
suboptimal). The Gambler’s fallacy is and always will be a fallacy: it is possible,
however, that fallacious reasoners follow rational rules, maximizing an unorthodox
utility function. This distinction thus specifies two nonexclusive ways in which
someone can behave irrationally. One can be externally irrational if the outcome of
an action is suboptimal; in this case the attribution of irrationality requires data
about the agent and the outcome. One can also be internally irrational if, regardless
of the outcomes of the action, the agent’s desires and action performed are
incoherent. (Hardy-Vallée & Thagard, 2008, pp. 181–182)

Hardy-Vallée and Thagard evaluate human performance in perceptual illusions

as ‘‘externally irrational:’’

Studying optical illusions, for instance, [Weiss, Simoncelli, and Adelson (2002)]
conclude for that they are ‘the best solution of a rational system designed to operate
in the presence of uncertainty’ (p. 598). Geisler and Kersten (2002) explain that
Weiss et al.’s assumptions about the probability and likelihood distributions of
velocities . . . ‘incorporated [implicitly] into the visual system arise through a
combination of evolution and perceptual learning’ (p. 509). . . . This is where the
distinction between internal and external assessment of rationality is important:
research on perception does not prove that optical illusions are not illusions. They
are still externally irrational but appear as internally rational, that is, produced by a
rational Bayesian mechanism. It is still wrong—externally irrational—to infer that
two lines are of different length in the Müller-Lyer illusion even for someone well-
versed in the psychology and psychophysics of perception because, when we
measure these two lines, they are of different length. (Hardy-Vallée & Thagard,
2008, pp. 182–183)

The authors reject the claim that perceptual illusions can be rational inferences.

Hardy-Vallée and Thagard believe that non-veridical (incorrect) perception must be

irrational on some account; they use the notion of external irrationality to support

their case.

Since the disagreement about rationality in illusions appears to hinge on the

distinction between veridicality and rationality, I will next trace this distinction in

two studies of perceptual illusions. Both studies represent a probabilistic normative

approach to modeling biological systems. Such probabilistic models take into
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account the ambiguities inherent in biological measurements (e.g., Knill & Richards,

1996) and also the imperfections of ‘‘noisy’’ biological computations

(e.g., Blakemore, 1990).1 These models are formal statements that incorporate

rules of logic and mathematics, as required by the standard picture of rationality

cited by Hardy-Vallée and Thagard. At the same time, these models represent a

naturalistic approach to normativity: they take into account basic properties of

biological systems, which is key to meaningful comparison of normative

prescriptions with biological phenomena. Although predictions of such models are

‘‘noisy’’ (they vary stochastically from trial to trial) and may exhibit a systematic bias

(as is the case in perceptual illusions), they nevertheless implement ideal rational

agents: ideal because the models capture only the essential properties of agents;

rational because they follow rules with the explicit goal to optimize behavior.

2.1. Motion Illusions

My first illustration is the study of Weiss et al. (2002) who argued that a family of

motion illusions is a result of optimal computations by the human visual system.

The ideal-observer model of Weiss et al. is an implementation of the Bayesian

Decision Theory. The model predicts how an optimal visual system ought to

interpret the generally ambiguous optical stimulation. Because of the ambiguity, the

visual system often has to guess (infer) properties of stimulation from indirect cues.

In Bayesian models, the inference is guided by the prior history of stimulation—the

‘‘prior distribution’’—which represents agent’s knowledge about the environment.2

The optimal guess is the one that is most likely to yield a correct interpretation of the

stimulus in light of this knowledge. Thus, the prior distribution used by Weiss et al.

instantiates their assumptions that (1) low velocities prevail in the natural viewing

conditions, and (2) the visual system takes into account the prevalence of low

velocities. For example, when the illumination is low and the immediate stimulation

provides little information for estimating velocities of moving objects, the visual

system ought to rely on its prior knowledge that in most cases object velocities

are low.
According to the theory of Weiss et al. (2002), the probabilistic inference should

lead to correct perception under most conditions of stimulation. But because of the

assumption that velocities are generally low, the visual system may sometimes

underestimate velocity. Illusions arise, for instance, when a fast-moving object is

presented under reduced illumination (as when you drive in fog). Weiss et al. and

others (Hürlimann, Kiper, & Carandini, 2002; Stocker & Simoncelli, 2006) confirmed

predictions of this model in psychophysical experiments with human observers.

The work by Weiss et al. (2002) supports the view that biological vision uses the

prior history of stimulation to resolve perceptual ambiguities. This strategy is rational

even though sometimes it yields incorrect percepts. Both the veridical (correct) and

the non-veridical (illusory) perception predicted by the ideal observer manifest

a rational biological system.
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2.2. Ventriloquism

My second illustration is ventriloquism, a perceptual illusion known since antiquity.

Ventriloquists produce voice without moving their lips, such that the audience
attributes the source of voice to an object external to the ventriloquist: usually a

puppet or dummy moved to simulate speech production.
Alais and Burr (2004) used the normative framework of optimal cue combination

(Landy, Maloney, Johnston, & Young, 1995; Maloney & Landy, 1989; Yuille &

Bülthoff, 1996) to investigate how humans estimate the location of sound from
concurrent visual and auditory ‘‘cues.’’ The model used by Alais and Burr (which

I will describe in some detail in the next section) prescribed how the uncertain visual

and auditory information ought to be combined to maximize the precision of
estimated object location. By this prescription, contributions of single-modality

(visual or auditory) estimates into the combined inter-sensory estimate depend on

reliabilities (precisions) of the single-modality estimates.3 Thus, whenever visual
information is more reliable than auditory information, the combined visual-

auditory estimate ought to depend more on vision than audition. The model also

predicts the precision of combined estimates. In many cases, the expected precision
of combined estimates is higher than the precision of visual and auditory estimates

measured separately.

Alais and Burr (2004) presented human observers with two concurrent stimuli:
visual (a blurred spot of light on a screen) and auditory (stereophonic sounds from

two speakers on the sides of the screen). The degree of visual blur was varied: the
more blur, the less precise the visual estimates of spot location, such that visual

precision was sometimes better and sometimes worse than auditory precision. When

visual precision was better, observers attributed the source of sound to the location of
the spot of light (as in ventriloquism), in agreement with predictions of the model.

The measured precision of combined visual-auditory localization was also in good

agreement with the predictions.
The results of Alais and Burr (2004) are evidence that attribution of auditory

signals to a source of visual signal is a rational behavior by a neural system that

maximizes precision of sensory estimates. The illusion of ventriloquism showcases
how neural computations that yield correct perception in a vast majority of cases

can make mistakes in some cases, just as in the study of motion perception by

Weiss et al. (2002).

2.3. Fallible Optimality

Perceptual illusions are spectacular examples of how optimization can lead to
occasional errors by biological systems that otherwise are overwhelmingly reliable.

The illusions are not unique in this respect. For example, sensory adaptation is

thought to improve (presumably optimize) agent’s performance in face of the
variable environment (Barlow, 1990; Clifford & Wenderoth, 1999). Yet adaptation

sometimes impairs sensory performance (e.g., Krekelberg, van Wezel, & Albright,

2006). Similarly, selective attention is thought to improve (presumably optimize)
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agent’s performance in face of demanding tasks. But attention, too, can sometimes

impair performance (e.g., Yeshurun & Carrasco, 1998, 2000).
Evidently, biological optimization occasionally backfires. Why? A part of the

answer is the uncertainty that plagues both sensory and motor systems, due to the

ambiguity of sensory stimulation (Knill & Richards, 1996) and due to the noise

associated with planning and execution of even simple motor acts (Maloney,

Trommershäuser, & Landy, 2007). This issue is taken on by probabilistic normative

models of the sort we saw above. Another part of the answer—which still awaits a

normative formulation—is the basic fact that neural computational resources are

limited so agents cannot optimize performance for many tasks at once. Instead,

performance is optimized for tasks that are most common or most pressing. This line

of thought adds an economic dimension to the normative approach; ‘‘economic’’ in

the sense of optimal allocation of scarce resources. The need for explicit modeling of

allocation and reallocation of neural resources is generally recognized in studies of

neural systems (e.g., Laughlin & Sejnowski, 2003; Lennie, 2003; Sakitt & Barlow,

1982; Sperling & Dosher, 1986; Stocker & Simoncelli, 2006), and new theoretical

efforts are under way to include the economic considerations in the scope of

normative theories of perception (e.g., Gepshtein, Tyukin, & Kubovy, 2007).
An external observer impressed by the sporadic errors of perception may be

tempted to describe the perceiving agent as irrational, or ‘‘externally irrational’’ as

Hardy-Vallée and Thagard (2008) do. But from the normative perspective presented

herein, this assessment is incorrect. Here, behavior is classified as rational when it

agrees with predictions of a normative model; behavior is classified as irrational (to a

variable and measurable degree) when it disagrees with predictions, whether or not

behavior is successful.
Notice that, from this normative perspective, rationality is attributed to the

biological agent rather than to the frame of reference used for evaluation. In other

words, rationality of biological agents or systems is their observer-independent

property. Biological behavior may appear irrational to an external observer who uses an

inappropriate normative framework, as illusions may appear irrational to an observer

who fails to distinguish veridicality of perception from its rationality. Such failures

render the observer incorrect rather than they render the observed behavior irrational.

Notice also that any behavior can be described as ‘‘externally irrational’’ because

one can always approach it using an incomplete or inappropriate normative

framework, in which the predicted performance will be superior to the performance

of biological agents. The fact that every conceivable behavior can be gratuitously

classified as ‘‘externally irrational’’ sheds further doubt on usefulness of the

distinction between internal and external rationality.

3. Genesis of Normative Models

I have illustrated how recent work on perceptual illusions helped to shrink the

gap between the predictions of normative models of perception and the actual
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human perception. It seems that this work has resolved the concern voiced by

Hardy-Vallée and Thagard, that the earlier normative models (the ‘‘standard picture’’

of rationality) had ignored the effectiveness of norms. Indeed, results of experiments

are now routinely compared with prescriptions of normative models, testing

effectiveness of normative models. But is this work consistent with the engineering

(Quinean) approach to normativity? More generally, do modern normative models

of biological perception and action evolve according to an engineering prescription?

To answer these questions I will now take a closer look at how candidate norms

(i.e., hypotheses about biological norms) are nominated and tested. I will then

compare the structure of reasoning used in normative studies with the structure of

standard scientific reasoning.

3.1. Norms of Sensory Fusion

The aforementioned framework of optimal cue integration rests on the assumption

that sensory systems seek to maximize precision of sensory estimates. The

assumption is formalized using the principle of maximum likelihood, which is

why these models are sometimes called Maximum Likelihood Estimation (MLE)

ideal observers.4 MLE observers take into account all the sensory information

relevant to the task and thus achieve the highest possible precision (the lowest

variability) of the combined estimates.
The normative framework of cue combination was first used to study how human

vision combined information from different sources—‘‘depth cues’’—about the

spatial layout of visual scenes (Landy et al., 1995; Young, Landy, & Maloney, 1993).

Examples of such cues are texture gradient, motion parallax, and binocular parallax.

This framework was later expanded to study interactions of vision with other sensory

modalities. A result of this effort has been an increasingly general framework for

research of sensory interactions. This work has had a constructive influence on the

descriptive studies in that it compels researchers to revisit previous results and also

seek new results, using more rigorous experimental methods than in the earlier work.

An example of how the normative project has a constructive influence on the

descriptive project is the recent work on visual-haptic interaction.5 Early descriptive

studies showed that visual information often dominated perception when observers

could concurrently use visual and haptic signals: observers’ reports of object

properties depended on visual rather than haptic information. This phenomenon was

dubbed ‘‘visual capture’’ (Hay, Pick, & Ikeda, 1965; Rock & Victor, 1964). But some

other studies showed that touch could dominate perception when information from

touch was more appropriate for the task than information from vision.6 The optimal

cue-combination framework presented an opportunity to recast these results as

special cases of a simple quantitative model—the MLE observer—in which the

contribution of every sensory modality into the combined percept is weighted by

modality’s precision: a more precise modality contributes more than a less precise

modality. Thus, the MLE observer predicted that sight should dominate perception

when visual precision is higher than haptic precision, touch should dominate when

Philosophical Psychology 67

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
e
p
s
h
t
e
i
n
,
 
S
e
r
g
e
i
]
 
A
t
:
 
1
8
:
5
0
 
2
0
 
F
e
b
r
u
a
r
y
 
2
0
0
9



haptic precision is higher than visual precision, and the contributions of modalities

in the intermediate conditions are described by a predicted function. Predictions of
the model were based on the estimates of precision of individual modalities,

measured in separate experiments, making the predictive models completely
constrained, i.e., leaving no free parameters for fitting the predictions to the data.

Psychophysical experiments confirmed predictions of the ideal observer for visual-
haptic interaction: Ernst and Banks (2002) reduced precision of visual information

using visual noise and found that the contribution of noisy visual information
decreased by the amount predicted by the optimal model. Gepshtein and Banks
(2003) asked whether visual and haptic information was combined differently under

different viewing conditions, because the relative precision of vision and touch
naturally depended on the viewing angle. The results showed that here too

information from vision and touch was weighted as prescribed by the normative
model. (The study of ventriloquism described in the previous section is an

application of this approach to the combination of visual and auditory signals.)
It turned out, however, that the optimality of visual-haptic combination was

restricted. Thus, Gepshtein, Burge, Ernst, and Banks (2005) compared how visual
and haptic signals combined when the signals coincided in space and when they were
spatially separate. When the signals coincided, perception followed the prescriptions

of the ideal observer, as in Gepshtein and Banks (2003). In particular, the precision of
combined visual-haptic percepts was better than precision by sight alone or touch

alone. But when the signals were spatially separated, the optimal behavior broke
down. The precision of combined percept was only as good as by sight alone or touch

alone. In other words, it turned out that the human nervous system applied the
optimal method of sensory fusion selectively, only for signals that coincided in space.

The findings that (a) visual-haptic combination was consistent with predictions of
the ideal observer for coincident signals, and (b) the combination was inconsistent

with predictions for non-coincident signals, could be interpreted as evidence of
suboptimality of visual-haptic combination.

Yet the findings can be interpreted differently, using a broader normative

framework, supporting the view that both coincident and non-coincident signals are
combined optimally. To see that, note that signals that originate from the same object

normally have a common spatial source. It is therefore plausible that a frugal nervous
system will allocate its computational resources for sensory combination only where

the combination is needed in the everyday behavior, rather than for signals that
arrive from arbitrary spatial locations. This possibility is supported by recent evidence

that visual and haptic signals were combined optimally when they were physically
separated in space, but were presented to observers such that they appeared as parts of
the same object (Helbig & Ernst, 2007; Takahashi, Diedrichsen, & Watt, 2008).

It is therefore plausible that the results of Gepshtein et al. (2005) about combination
of non-coincident sensory signals manifest a frugal nervous system which is specialized

for perception of objects and which allocates its computational resources optimally. In
other words, the improved precision in coincident signals and the lack of improvement

in non-coincident signals are both manifestations of optimal behavior.
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In spirit of the above normative approach, this possibility can be tested further

as follows:

1. A mathematical expression must be derived describing how spatial distances

between signals relate to the likelihood that signals belong to the same object.

(I will call this expression an ‘‘objecthood function.’’) The objecthood function
can be found using the rules of projective geometry and the statistical

measurements of optical stimulation.

2. Then, the objecthood function must be incorporated in an MLE model so one can

derive new predictions and test them. An agreement between the predictions and

results of experiments would support the broader normative model.

3. Importantly, the broader normative model would hold only if the objecthood

function is general, i.e., if it is consistent with experimental results in contexts

other than visual-haptic combination, such as in studies of spatial perceptual

organization. If alternative objecthood functions exist, then quantitative
comparison of the alternative predictions is in order.

3.2. Normative Reasoning

The above review of visual-haptic combination is an illustration of how candidate

normative models of biological perception are advanced and tested. To see the
structure of reasoning used in this work, recall a form of inference called abductive

reasoning. Sometimes it is called ‘‘abductory’’ or ‘‘retroductive’’ reasoning. Abductive

reasoning was first described by Charles S. Pierce who defined it as follows:

The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true. (Buchler, 1955, p. 151)

Peirce held that the standard method of scientific discovery constitutes a

combination of abductive and inductive reasoning. Suppose that term A in the
above syllogism leads to predictions other than C (along with C itself), such that the

‘‘reason to suspect that A is true’’ can be tested in separate experiments. This way new

hypotheses are formulated and tested. The latter step—of experimental hypothesis

testing—is an instance of standard inductive reasoning.
The logic of normative work on sensory fusion is readily explained using the

Peircean argument as follows. The normative theorist is aware of the empirical results

from studies of cue combination (term C in Peirce’s syllogism). The theorist realizes

that if the human nervous system implemented the maximum-likelihood computa-
tion (term A) then many empirical results from previous studies (term C) would

follow necessarily. This step is that of abductive reasoning. The next step is inductive.

The hypothesis that the nervous system implements maximum-likelihood computa-

tions leads to new predictions (e.g., that precision of combined estimates can be
higher than precision of component estimates) which are then tested in experiments.

Similarly, the hypothesis that sensory systems are specialized for perception of

objects is derived from the facts that are ‘‘surprising,’’ i.e., cannot be explained by

Philosophical Psychology 69

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
e
p
s
h
t
e
i
n
,
 
S
e
r
g
e
i
]
 
A
t
:
 
1
8
:
5
0
 
2
0
 
F
e
b
r
u
a
r
y
 
2
0
0
9



theories that lack a notion of objecthood. This line of thought can be tested as

proposed in the previous section, through a combination of abduction (the

hypothesis of optimal recourse allocation) and induction (the general testing of the

objecthood function), in accord with the Peircean view of standard scientific

reasoning.

3.3. Scientific and Engineering Normativity

Two aspects of norm development are important for the task of contrasting the

scientific and engineering views of normativity: generality of normative models and

their principledness:

. Generality: a candidate normative model is accepted when its predictions are

confirmed in experiments. The experiments test predictions both narrowly, in the

domain for which the model is first proposed, and broadly, for other consequences

of the model. Importantly, if the broad test fails, the model is rejected or revised.

For example, the framework of optimal cue integration has been testes in studies

of many sensory cues: first within and then between sensory modalities. Several

predictions were tested: concerning the magnitudes of sensory estimates and also

the distributions of errors of estimates. The testing was rigorous: all model

parameters were measured in experiments, leaving no free parameters for fitting

model predictions to the data.

. Principledness: normative models incorporate assumptions about the goals and

constraints of studied systems as formal statements. The formalism is reduced to

basic principles, such as the principle of maximum likelihood in work on cue

integration, or probability theorems in work on perceptual inference.7

In contrast, neither generality nor principledness is essential for the engineering

approach to normativity. Hardy-Vallée and Thagard (2008) make that clear:

Norms are justified by their effectiveness. If a procedure succeeds best in attaining a
particular goal in a certain context, it is therefore, a normatively correct procedure
in that context. (p. 177)

The place of normativity in engineering has been clarified by Houkes (2002) who

argued that a ‘‘minimal condition for calling activities ‘engineering’’’ is their focus on

design of useful artifacts (‘‘engineers do not merely . . . develop theories or perform

calculations, but they design and modify artificial structures, such as bridges,

airports, or banana flavorings’’ [Houkes, 2002, p. 260]). The focus on design of useful

artifacts determines the nature of normativity in engineering:

Technical artifacts can be described in two ways: from one perspective, they are
physical structures; from the other, they are functional objects that stand in a
relation to other objects and human practices. The normativity inherent in
engineering may only be understood from this dual description or nature of
artifacts: the rules made by the engineer specify proper use of the artifact in
common circumstances, and ‘proper use’ can be at least partially explained by
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means of the physical structure. One should not drive over a bridge with a
truckload of concrete piers, given the maximal stress on the structure; one should
not put aluminum containers in a microwave oven, given the high reflectance rate
of the metal. (Houkes, 2002, p. 260)

In other words, the engineer’s goal is to effectively manage physical properties of

technological artifacts. This goal requires mastery of many tools used by the scientist,

but the scientist and the engineer use these tools differently.
Because of the emphasis on effectiveness, the engineering approach to normativity

is similar to fitting statistical models to experimental data. A model is judged

successful when it fits the data closely. Scientists, too, seek to develop theories and

models that fit (‘‘explain’’) the data, but here the fit of model and data is achieved by

means other than in engineering. Close fit alone is not a mark of success. In fact, the

scientific community tends to reject normative theories derived according to the

engineering prescription in which only effectiveness matters. For example, in

Bayesian modeling of perception it is expected that the prior distribution of estimates

is justified on grounds other than a model’s good fit to the data. If such justification

is not available, the model is denounced as unprincipled; it is viewed as a statistically

sophisticated descriptive model of the data rather than a candidate for inclusion in a

broader normative theory. It is therefore misleading to think of scientific theories as

artifacts designed by the scientist to fit experimental data, similar to how bridges are

designed by the engineer to control traffic and fruit flavorings are designed to imitate

taste of fruit.

3.4. Closing Miller’s Gap

Why did the gap emerge between the norms of behavior and the actual behavior in

the ‘‘standard picture’’ of human rationality? I hope the above illustrations made it

clear that the reason is not an inadequacy of the scientific approach to normativity.

Miller’s gap has shrunk because our understanding of the constraints of biological

systems has improved, and we have improved the methods used for evaluating

behavior. Thus, probabilistic models mentioned above have been taking into account

the uncertainties implicit to everyday perception, such that laboratory tests of model

predictions engaged the same biological processes that are normally engaged in the

natural behavior outside of the laboratory. This approach implements the influential

notion of ‘‘ecological validity’’ of Brunswick (1955) who anticipated the current

interest in how neural systems adapt to statistical properties of the environment.

On this view, early normative models of human rationality failed to explain behavior

because they disregarded the basic fact that behavior is optimized to its natural

context.

The importance of proper context for evaluating rationality in biological systems is

underscored by recent studies of human action planning under uncertainty. These

studies have shown that humans can achieve nearly optimal motor performance

in face of uncertainties implicit to planning and execution of simple movements

(e.g., Trommershäuser, Maloney, & Landy, 2003). The modeled uncertainties have
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increasingly approximated those in the natural behavior (Gepshtein, Seydell, &

Trommershäuser, 2007). In contrast, early studies of rationality presented subjects

with arbitrary tasks, offering no justification for the probabilities attached to

particular outcomes of behavior. For example, Maloney et al. (2007) compared

human performance under uncertainties implicit to everyday motor behavior

(such as hand reaching) with performance in cognitive ‘‘paper-and-pencil’’ tasks of

the traditional decision-making literature. The authors concluded that results of the

latter are not representative of the former, such that

Human capacity for decision making bears the same relation to the economic tasks
of classical decision making as human language competence bears to solving the
Sunday crossword puzzle. (Maloney et al., 2007, p. 312)

In other words, closing Miller’s gap requires that not only the norms undergo

naturalization, but so also does the context in which the norms are evaluated.

4. Conclusions

Both scientific and engineering approaches to normativity strive to develop models

that reliably predict behavior (i.e., are efficient) and both rest on general principles of

mathematics and physics (i.e., both can be principled). But the priorities of two

approaches are different. The priority of engineering is efficiency. The priorities of

science are generality and principledness. Because of the focus on efficiency, a root

metaphor for engineering accounts of behavior is statistical model. This approach

encourages the engineer to use different models to fit different data, yielding multiple

narrow models as the scope of explananda grows. In contrast, the scientist seeks to

ground models of behavior in a small number of basic principles, such that a few

principles explain as wide range of data as possible (lex parsimoniae). A root

metaphor for scientific account of behavior is natural law. Because of the burden of

lex parsimoniae, scientific models are bound to develop slower but remain simpler

than the engineering models. Thanks to this simplicity, the scientific approach is

likely to give us more comprehensive (and more comprehensible) theories of

biological behavior than the engineering approach.
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Notes

[1] One reason visual measurement are inherently ambiguous is the optical projection from the
three-dimensional scenes to the effectively two-dimensional retinal surface, such that the
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same retinal image may correspond to different stimuli. An example of noisy biological

computation is the absorption of light by retinal receptors, which is a stochastic process.
[2] This knowledge can be implicit, e.g., implemented in automatic neural computations,

possibly inaccessible to awareness. This knowledge is usually described by saying that

nervous systems ‘‘take into account’’ or ‘‘represent’’ regularities of the environment.
[3] The notion of reliability has a technical meaning; it is defined as the inverse of the variance

of the distribution of estimates. Precision of estimation is defined as the standard deviation

of this distribution.
[4] The notion of ‘‘ideal observer’’ can be used narrowly or broadly. In the narrow sense, ideal

observer models disregard the constraints of biological computation, so the researcher may

compare performance of a biological system with a mathematical ideal. In the broad sense,

ideal observer models incorporate some biological constraints, such as the decision noise in

the Statistical Decision Theory (Geisler, 1989; Green & Swets, 1966). Here I use the latter

approach.
[5] ‘‘Haptic’’ information is sensory information gathered through active touch, using tactile

and proprioceptive signals.
[6] For example, touch is more reliable than vision for estimating roughness of surfaces

(Lederman & Abbott, 1981).
[7] This is not to say that the cue-integration models and the Bayesian inference models are

incompatible. On the contrary, the two kinds of models belong to the same decision-

theoretic framework and are readily combined (e.g., Hillis, Watt, Landy, & Banks, 2004).
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