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Individually, visual neurons are each selective for several aspects of stimulation, such as stim-
ulus location, frequency content, and speed. Collectively, the neurons implement the visual
system’s preferential sensitivity to some stimuli over others, manifested in behavioral sensitiv-
ity functions. We ask how the individual neurons are coordinated to optimize visual sensitivity.
We model synaptic plasticity in a generic neural circuit, and find that stochastic changes in
strengths of synaptic connections entail fluctuations in parameters of neural receptive fields.
The fluctuations correlate with uncertainty of sensory measurement in individual neurons: the
higher the uncertainty the larger the amplitude of fluctuation. We show that this simple rela-
tionship is sufficient for the stochastic fluctuations to steer sensitivities of neurons toward a
characteristic distribution, from which follows a sensitivity function observed in human psy-
chophysics, and which is predicted by a theory of optimal allocation of receptive fields. The
optimal allocation arises in our simulations without supervision or feedback about system per-
formance and independently of coupling between neurons, making the system highly adaptive
and sensitive to prevailing stimulation.
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2 SENSORY OPTIMIZATION BY STOCHASTIC TUNING

Visual systems obtain sensory information using large popu-
lations of specialized neurons. Each neuron is characterized
by its receptive field: a spatiotemporal window in which sig-
nals are accumulated before the neuron responds. Signals are
weighted differently in different parts of receptive fields. The
weighting determines the selectivity (“tuning") of the neuron
to a particular pattern of stimulation. Motion-sensitive neu-
rons, for instance, are each selective to a range of stimulus
speeds within their receptive fields (Nakayama, 1985; Wat-
son & Ahumada, 1985; Rodman & Albright, 1987).

Since the total number of neurons is limited, visual sys-
tems face a problem of resource allocation: to which stim-
uli they should be most sensitive. This problem is dynamic
because limited neural resources are available for use in a
highly variable environment. Little is known about how the
resource allocation problem is solved. Do visual systems
monitor which aspects of stimulation prevail in the current
environment? Do they use a specialized mechanism that co-
ordinates the allocation of receptive fields?

We propose that effective resource allocation can be un-
derstood in terms of two basic features of biological motion
sensing. First is the plasticity of neuronal circuits that con-
trol the selectivity of receptive fields. It is known from stud-
ies of visual attention and adaptation that neuronal receptive
field are highly variable (Barlow, 1969; Moran & Desimone,
1985; de Ruyter van Steveninck et al., 1994; Seung, 2003;
Krekelberg et al., 2006; Vislay-Meltzer et al., 2006; Hietanen
et al., 2007; Womelsdorf et al., 2008). This variability has a
stochastic component. Even though the selectivity of individ-
ual neurons may appear stable when measured by averaging
spiking neuronal activity, individual spikes and changes in
synaptic weights caused by coincident spiking are stochastic
processes. Our results indicate that the stochasticity can be
instrumental in optimization of visual performance.

Second is the fact that the capacity of individual neurons
for estimating stimulus parameters is associated with uncer-
tainty of measurement (Gabor, 1946, 1952; Cherry, 1978;
Marcelja, 1980; Daugman, 1985; Resnikoff, 1989). In par-
ticular, receptive fields of different sizes are useful for mea-
suring different aspects of stimulation (Gepshtein, Tyukin, &
Kubovy, 2007). Small receptive fields are useful for localiza-
tion of stimuli, i.e., for measuring stimulus location, whereas
large receptive fields are useful for measuring stimulus fre-
quency content. Thus, the size of receptive field should be an
important parameter for optimizing system behavior.

We investigate consequences of stochastic fluctuations in
receptive field size using numerical simulations and analy-
sis. Numerically, we model plasticity of synaptic weights
in generic neural circuits and find that the plasticity is ac-
companied by fluctuations of receptive field size and that the
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Figure 1. Visual contrast sensitivity in a space-time graph.
(A) Human spatiotemporal contrast sensitivity (Kelly function)
transformed from the frequency domain to space-time (Kelly, 1979;
Nakayama, 1985; Gepshtein et al., 2007). The axes are the tem-
poral and spatial extents of receptive fields. The colored contours
(isosensitivity contours) represent contrast sensitivity. The oblique
lines represent speeds (constant-speed lines). The lines are paral-
lel to one another in logarithmic coordinates. (B) Spatiotemporal
sensitivity function that emerges in the present simulations from
independent stochastic fluctuations of receptive fields in multiple
motion-sensitive neurons.

amplitude of fluctuations co-varies with receptive field size.
Analytically, we use standard stochastic methods (Gardiner,
1996) to explore consequences of such fluctuations in neu-
ronal populations.

We find that the fluctuations can steer receptive fields of
multiple neurons toward a stable state that is remarkable in
two respects. First, the distribution of receptive field sizes
supports a distribution of spatiotemporal visual sensitivity
that is strikingly similar to that observed in the human vision
(Kelly, 1979), illustrated in Fig. 1. Second, the distribution
of receptive field sizes in the population is consistent with
prescriptions of a model of efficient allocation of receptive
fields in the human visual system (Gepshtein et al., 2007),
where errors of measurement are minimized across all re-
ceptive fields.
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Local dynamics

Uncertainty of measurement

Uncertainty principle

The capacity of individual neurons for estimating stimulus
location and frequency content is limited by a constraint
known as the “uncertainty principle" (Gabor, 1946, 1952) or
“uncertainty principle of measurement" (Resnikoff, 1989).
According to this principle, the uncertainties associated with
measuring the location and frequency content of the signal
over some interval ∆x (spatial or temporal) are not indepen-
dent of one another:

UxU x̃ ≥ C, (1)

where Ux is the uncertainty of measuring signal location
within ∆x, U x̃ is the uncertainty of measuring the variation
of signal over ∆x (which is the “frequency content" of the
signal on ∆x), and C is a positive constant. Equation 1 im-
plies that, at the limit of measurement (UxU x̃ = C), the two
uncertainties trade off: decreasing one uncertainty can only
be accomplished by increasing the other.

The uncertainty principle has proven to be most useful for
understanding function of individual visual neurons in the
primary visual cortex. The neurons were shown to imple-
ment an optimal tradeoff between the uncertainties associ-
ated with measurement of stimulus location and spatial fre-
quency content (Marcelja, 1980; MacKay, 1981; Daugman,
1985; Glezer et al., 1986; A. J. Jones & Palmer, 1987).

Here we are concerned with consequences of the uncer-
tainty principle for neuronal populations characterized by
a broad range of spatial and temporal extents of receptive
fields. Gepshtein et al. (2007) have recently undertaken an
analysis of such a system. They considered an ideal case
in which the neurons were allocated to stimuli such that the
conditions of measurement with the same expected uncer-
tainty would receive the same amount of neural resources.
The analysis showed that a characteristic of performance ex-
pected in the ideal visual system had the same shape as a
well-known characteristic of human contrast sensitivity: the
Kelly function illustrated in Fig. 1. In particular, it was pre-
dicted that the position of the sensitivity function in the co-
ordinates of Fig. 1 would depend on statistics of stimulus
speed, but the shape of the function would be invariant under
changes in stimulus statistics.

This view has been supported by a study of how motion
adaptation changes contrast sensitivity across the entire do-
main of the Kelly function (Gepshtein, Lesmes, & Albright,
2013). The changes of contrast sensitivity formed a pat-

tern similar to the pattern predicted for the ideal system.
From this perspective, the sensitivity function and its adap-
tive changes result from an optimization process that medi-
ates the efficient and flexible allocation of neurons, in accord
with the expected uncertainty of measurement, and in face of
the variable statistics of the environment.

Here we explore how this optimization can be imple-
mented in visual systems. We address this question by,
first, reviewing how the expected uncertainty of measure-
ment varies in populations of neurons characterized by a
wide range of spatial and temporal extents of their receptive
fields.

Composite uncertainty of measurement

Consider a visual system in which the same neurons can be
used for localizing stimuli and for measuring stimulus fre-
quency content. As mentioned, at the limiting condition of
measurement (UxU x̃ = C), decreasing uncertainty about one
aspect of measurement (say, location) is necessarily accom-
panied by increasing the other (frequency content). When
written as a function of receptive field size, the joint uncer-
tainty of measuring stimulus location and frequency content
incorporates both tendencies, the increasing and the decreas-
ing:

U j(X,X̃) = λXX + λX̃/X, (2)

where λX and λX̃ are positive coefficients representing the
relative importance of the two aspects of measurement and
X is the size of the receptive field (spatial or temporal). This
uncertainty function has a unique minimum, at which recep-
tive fields are most suitable for concurrent measurement of
stimulus location and frequency content (Gepshtein et al.,
2007).

When measurements are performed in space and time, us-
ing receptive fields of spatial and temporal extent S and T ,
the joint uncertainties of separate spatial and temporal mea-
surements are

U j(T,T̃ ) = λT T + λT̃ /T,

U j(S ,S̃ ) = λS S + λS̃ /S ,

and the joint uncertainty of spatiotemporal measurements
(which we call “composite uncertainty”) is

Uc = U j(T,T̃ ) + U j(S ,S̃ ). (3)

The smaller the composite uncertainty of a receptive field,
the more useful it is for jointly measuring location and fre-
quency content of spatiotemporal stimuli. Receptive fields
with equal uncertainty Uc are assumed to be equally useful
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Figure 2. Mechanism and dynamics of receptive field size. (A) Basic neural circuit. Input cells I1 and I2 receive stimulation from
sensory surface x, indicated by the converging lines in corresponding colors. The range of inputs for each cell is its receptive field. R is
the readout cell whose activation is mediated by input-readout weights w1 and w2. The weights are dynamic: they depend on coincidence
of activation of input and readout cells (Equation 7 and Fig. 3A). The weights determine the size of the readout receptive field. (B) Central
tendency of readout receptive field (S r in Equation 15), measured in numerical simulations of the circuit in A. As the input-readout weights
are updated, S r fluctuates on the interval between the smallest and largest input receptive field sizes, marked on the two sides of the plot. The
histogram represents probabilities of the different magnitudes of S r over the course of numerical simulation (APPENDIX A). The dashed
line is the central tendency of S r: the most likely receptive field size. (C) Variability of S r. The data points represent average changes of S r

for different magnitudes of S r. The more S r is removed from its central tendency (the dashed line copied from B) the larger is its variation,
akin to the variation of uncertainty of measurement by a single receptive field captured by Equation 2.

for joint spatiotemporal measurements.
As mentioned, the expected utility of visual measurement

could guide allocation of receptive fields of different spatial
and temporal extents. Now we turn to the question of how
this allocation can be implemented in terms of basic proper-
ties of neuronal circuits. We start by scrutinizing the mech-
anisms that control the size of receptive fields in neural cir-
cuits, with an eye for how the function of such circuits is
constrained by Gabor’s uncertainty principle.

Basic sensory circuit

We model a simple neural circuit in which the output recep-
tive field size is controlled by weighted inputs from several
cells with different receptive field sizes. In this circuit we im-
plement a basic mechanism of neural plasticity (Hebb, 1949;
Bienenstock, Cooper, & Munro, 1982; Paulsen & Sejnowski,
2000; Bi & Poo, 2001). We find that this mechanism alone is
capable of adaptively adjusting the size of receptive field ac-
cording to the task at hand. This adaptive tuning of receptive
fields is enabled by stochastic fluctuations of the receptive
field size, while the fluctuations are themselves a byproduct
of circuit plasticity. The resulting dynamics of receptive field
size follows a simple principle in which receptive field vari-
ability is a function of receptive field size.

We start with a circuit of which the measured character-

istic is a receptive field on a single dimension x (Fig. 2A),
which can be space or time. We first study how the circuit can
be used to estimate stimulus location on x. We then general-
ize to joint measurement of stimulus location and frequency
content on x, after which we consider joint measurement of
location and frequency content in two dimensions (space and
time).

Fig. 2A is an illustration of an elementary circuit used in
our simulations and analysis. “Readout" cell R could be ac-
tivated by two “input" cells I1 and I2 with receptive fields
of different sizes on x. Receptive field size was defined as
the standard deviation of stimulus locations on x that evoked
cell responses: S 1 and S 2 for cells I1 and I2. For simplicity,
we first considered receptive fields that fully overlapped, but
which were not generally concentric. The stimuli were dy-
namic textures with natural spatial and temporal amplitude
spectra (as explained in Appendix A).

Input cells could each be excited by stimuli falling within
their receptive fields:

yi(x) = exp
(
− 0.5(x/S i)2

)
. (4)

where yi was the response of i-th cell, encoding the distance
of the stimulus from the center of receptive field. In simu-
lations of idealized neurons, values of yi directly represented
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Figure 3. Coincident firing of input and readout cells in the basic circuit. (A) Coincidence rate ci of spiking for input and readout cells
(Equation 14) for all combinations of input-readout weights w1 and w2, plotted separately for cells I1 (left) and I2 (right). For I1, all input
spikes are accompanied by readout spikes, so that c1 = 1 for every combination of w1 and w2. For I2, input spikes sometimes do not lead to
firing of the readout cell. Since I1 is more likely to fire together with the readout cell than I2, weight w1 is on average larger than weight
w2, and the size of readout receptive field gravitates toward the size of receptive field in I1 which is smaller than the size of receptive field in
I2. (B) Adaptive response threshold Θ of readout cell for three regimes of measurement. The blue dots represent the values of Θ recorded in
10,000 iterations (every fifth value is shown). The simulation was divided to three periods of equal length, each using a different computation
of input cell responses, from left to right: Equation 4, Equation 9, and Equation 8. Threshold Θ fluctuates in the vicinity of a value that is
distinct for each method of response computation; it is represented by the red line: the running average of 100 previous magnitudes of Θ.

the strength of cell responses, and in simulations of Poisson
neurons, values of yi represented the rate of Poisson random
variables (Appendix A). The maximum value of yi was the
same for all input cells and it was independent of size S i

of cell receptive field. Activation of input cells could lead
to activation of the readout cell, modulated by input-readout
weights wi:

yr =

 1,
∑

i wiyi ≥ Θ

0, otherwise,
(5)

where yr is the response of the readout cell and Θ is response
threshold of readout cell. In effect, the size of readout recep-
tive field depended on sizes of input receptive fields (here S 1

and S 2), such that S 1 ≤ S r ≤ S 2. (The size of the readout re-
ceptive field, S r, was computed as explained in Appendix A,
Equation 15.)

Response threshold Θ in Equation 5 depended on recent
stimulation:

Θ =

0∑
k=−K+1

y(k)
r /K, (6)

where k is a serial index of stimuli with k = 0 indicating
the most recent one. That is, threshold Θ is a running av-
erage of K most recent responses of the readout cell. (In
the simulations for Fig. 3, K was set to 50.) This way
we implemented “metaplasticity" (i.e., adaptive plasticity;
Bienenstock et al., 1982; Abraham & Bear, 1996). Threshold
Θ fluctuated around a constant value while stimulation was
stationary (Fig. 3B), but Θ rapidly changed its value as stim-
ulation changed, ensuring that several input cells (two input

cells in Fig. 2) had to be activated together to evoke a readout
response.

We studied how plasticity of input-readout connections af-
fected the receptive field size of readout cell. In numerical
simulations, we had the input-readout synaptic weights wi

depend on the relative timing of presynaptic and postsynap-
tic spiking activity (Hebb, 1949; Paulsen & Sejnowski, 2000;
Bi & Poo, 2001). Weights increased when a spike of input
cell coincided with (fell within a short interval of) a spike of
readout cell:

∆wi = εci − τwi, (7)

where ci was the coincidence rate: the fraction of input
spikes that coincided with readout spikes (Equation 14) and ε
was a positive constant. Weight increments were balanced by
exponential decay of weights at a rate determined by constant
τ > 0 (Bienenstock et al., 1982).

Readout cells tended to co-fire more with input cells
whose receptive fields were small rather than large. This is
illustrated in Fig. 3. Panel A is a comprehensive map of co-
incidence rates: c1 (for cells I1 and R; left panel) and c2 (for
cells I2 and R; right panel):

• Rate c1 was high for all combinations of weights w1

and w2. This is because the receptive field of I1 was
encompassed by the receptive field of I2, activation of
I1 was always accompanied by activation of I2, and
so the joint activation of I1 and I2 led to activation of
R. But activation of I2 alone was insufficient to acti-
vate R, as is illustrated in the right panel of Fig. 3A.
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Figure 4. Stable-state behavior of the basic circuit.(A) Circuit dynamics led to remarkably stable outcomes, illustrated here in the space
of input-readout weights w1 and w2. The plot summarizes the results of multiple numerical simulations with different starting pairs of
weights (w1,w2). Each arrow represents the mean direction and magnitude of weight change measured at the arrow origin. The region to
which the weights tended to converge is marked by a gray outline, magnified in panel B. (The two other outlines, in pink and green, are
explained in panel B.) (B) Enlargement of a region of the weight space in panel A. The gray outline marks the same region in (w1,w2) as
the gray outline in panel A. The outline is superimposed on a histogram of weights: a grid of (gray) disks of which the sizes represent
how often the simulation yielded the pairs of weights (w1,w2) at corresponding disk locations. When circuit activity was controlled by
stimulus location only, weight w1 tended to be larger than weight w2, and so the size of the readout receptive field tended toward the size of
smaller input receptive field, as reported in Fig. 2B–C. When circuit activity was controlled only by stimulus frequency content, the weights
reversed: w2 tended to exceed w1, and so the size of the readout receptive field tended toward the size of the larger input receptive field
(cell I2), summarized by the histogram in pink. When circuit activity was controlled by both stimulus location and frequency content, the
weights had intermediate values, summarized by the histogram in green, yielding readout receptive fields of intermediate size.

• Rate c2 was high only for some combinations of w1

and w2. Since coincidence c1 was larger than coinci-
dence c2 for most combinations of weights, weight w1

was incremented more often than weight w2, making
S r on average more similar to S 1 than to S 2.

The ensuing receptive field dynamics was characterized
by two prominent tendencies. First, readout receptive field
size S r fluctuated between the smallest and largest input re-
ceptive field sizes with a clear central tendency, S ∗r , which
we called the preferred size of the readout receptive field, il-
lustrated in Fig. 2B–C. Second, the amplitude of fluctuation
of S r was a function of proximity of S r to S ∗r : the closer to
S ∗r the smaller the amplitude, as illustrated in Fig. 2C.

Steady-state behavior of this circuit was remarkably sta-
ble, summarized in the graph of input-readout weights w1

and w2 in Fig. 4. Having started with different distributions
of the weights, represented by the grid of arrows in Fig. 4,
we found that in the long run the weights converged to the
same vicinity of the weight space, marked by the gray cir-
cular outline. At the steady-state, weight w1 was larger than
weight w2, underlying the aforementioned result of S 1 > S 2.

Measurement of location

The above behavior of the elementary circuit can be thought
of as a competition of input cells for control of the read-
out cell. We have observed above that the input cell with a
smaller receptive field won the competition, and so the read-
out receptive field size tended to be small. This behavior
is consistent with the fact we mentioned before that small
receptive fields are generally more suitable for measuring
stimulus location than large receptive fields. We therefore
consider the above circuit as an implementation of this ten-
dency.

Measurement of frequency content

In contrast, large receptive fields are more suitable than
small ones for measurement of stimulus frequency content.
We next studied measurement of stimulus frequency content
with the same circuit. We found that now the input cell with
a larger input receptive field won the competition, and so the
readout receptive field size tended to be large.

In the following paragraphs, we illustrate this by first con-
sidering measurement of frequency content alone, disregard-
ing measurement of stimulus location, and then we turn to
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effects of jointly measuring stimulus location and frequency
content (Fig. 4B).

The size of input receptive fields in frequency domain fx

is reciprocal to its size on x, which is why responses of input
cells to stimulation in the frequency domain were defined as

zi( fx) = exp
(
− 0.5( f S i)2

)
. (8)

As in Equation 4, values of yi either represented the strength
of cell responses directly (in simulations of idealized neu-
rons) or they represented the rate of Poisson random vari-
ables (in simulations of Poisson neurons) as detailed in Ap-
pendix A. Applying the same method of updating input-
readout weights as above (Equation 7), we found that now
readout receptive field size (S r) tended toward the larger in-
put receptive field size on x (S 2). That is, S r tended toward
the smaller input size on fx, but because of the reciprocity
of receptive field sizes on x and fx, the tendency toward a
smaller size on fx was manifested as a tendency toward a
larger size on x.

This behavior is summarized in Fig. 4B, in the graph of
input-readout weights (pink outline and histogram). As be-
fore, steady-state behavior of the circuit was remarkably sta-
ble, but now weight w1 was lower than weight w2 such that
S 1 < S 2.

To sum up, when readout receptive fields measured either
stimulus location alone or frequency content alone, their evo-
lution led to opposing tendencies in receptive field size: for
measurement of location they tended to become smaller and
for measurement of frequency content they tended to become
larger. In both cases, readout receptive field sizes fluctuated
around their preferred values: the farther from the preferred
value the larger the amplitude of fluctuation (Fig. 5).

Joint measurement of location and frequency content

Next we studied the behavior of the basic circuit of which
the input cells were activated by stimuli that varied in two
parameters: location x and frequency content fx. Input cell
response was defined as

yzi(x, fx) = yi(x)zi( fx). (9)

where yi(x) and zi( fx) were as in Equations 4 and 8. Resulting
preferred weights w1 and w2 are summarized in Fig. 4B and
dynamic of receptive field size S r is summarized in Fig. 5.
The values of weights and receptive field sizes fell in between
those observed when only stimulus location or only stimulus
frequency content were taken into account.

Equation 9 is a general description of circuit behavior, of
which the conditions captured by Equations 4 and 8 are spe-
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Figure 5. Lawful fluctuations of receptive field size. Variability
of readout receptive field size (S r) for different regimes of measure-
ment: measurement of stimulus location alone (gray), stimulus fre-
quency content alone (pink), and jointly stimulus location and fre-
quency content (green). The data points represent average changes
of S r for different magnitudes of S r (as in Fig. 2C). In all cases, the
more S r was removed from its central tendency (the dashed line)
the larger was its variation.

cial cases. Circuit dynamics for all the regimes of measure-
ment considered above is summarized in Fig. 4B and Fig. 5.
In Fig. 4B we plotted the convergence regions and histograms
of weights obtained during numerical simulations of circuit
dynamics. To summarize, preferred weights depended on the
nature of events that activated input cells, and so did pre-
ferred readout sizes S r (Equation 15) as shown in Fig. 5. No-
tably, we found that in every case readout receptive field size
S r fluctuated such that the amplitude of fluctuation varied as
a function of S r.

Circuit generalization

The uncertainty principle for receptive fields

Behavior of the neural circuit introduced in Fig. 2 can be
summarized as follows.

• Input cells are vying for control of the readout cell,
as they measure the location and frequency content of
stimuli impinged on their overlapping receptive fields.

• The input cell with the smallest receptive field tends to
win the competition when stimulus location is the only
factor, because activation of such a cell is on average a
more reliable indicator of stimulus location than acti-
vation of cells with larger receptive fields.
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Figure 6. Stochastic tuning of readout receptive fields in space-time. The coordinates in every panel represent the temporal and spatial
extents, T and S , of a receptive field. (A) Preferred size of readout receptive field. The white cross indicates the starting receptive field
size X0 = (T0, S 0). The green cross indicates a neutral point, at which the weights of all the input cells to the readout cell are equal to one
another. (The white and green crosses have the same locations in all panels.) The map in the background is the probability of the different
sizes of readout receptive fields over the course of simulation (10,000 iterations), indicating that the size of readout receptive field tends to
drift toward a certain spatial-temporal size (“preferred size") marked by the intersection of white dotted lines at X∗r = (T ∗r , S ∗r ). (B–D) Effect
of the prevailing speed of stimulation on the readout receptive field. Simulations were performed as for panel A, but using biased stimulus
distributions, characterized by different prevailing speeds ve (Equation 24) represented by the stimulus probability distributions plotted in
green at top-right of each panel (0.2 deg/s in B, 1.0 deg/s in C, and 5.0 deg/s in D).

• Conversely, the input cell with the largest receptive
field tends to win the competition when stimulus fre-
quency content is the only factor.

• When these factors are combined, advantages and dis-
advantages of small and large receptive fields drive the
readout receptive fields toward an intermediate size.

This behavior is expected in a system constrained by the
uncertainty principle of measurement (Equation 1). Read-
out receptive fields in our simulations tended to be small or
large when we considered, respectively, only the location or
only the frequency content of the stimulus, and they tended
to be of intermediate size when both stimulus location and
frequency content were taken into account, as if the circuit
was optimized according to the uncertainty principle.

Key features of circuit behavior observed in the elemen-
tary case of Fig. 2 held across a very broad range of cir-
cuit configurations. Circuit dynamics captured by Fig. 5 was
found whenever multiple input cells with different receptive
field sizes responded to the same stimuli (characterized by
the same x and/or f ), and whenever readout threshold was
such that readout cell activity depended on multiple input
cells, whether the input receptive fields overlapped fully or
partially. The dynamics did not depend on the shapes of
weighting functions for input receptive fields, on whether
the input receptive fields were fixed or their sizes varied,
or on whether spiking activity was noisy or not (as long as
the noises on input cells were uncorrelated). The same dy-
namics was observed in circuits where input-readout weights

decayed in the absence of spike coincidences (as described
above) or the weights were normalized, and also in circuits
that consisted in many more cells than in Fig. 2, as we show
next.

Measurement in space-time

Similar results held in circuits activated by more stimulus
dimensions and using more input cells than in Fig. 4. For ex-
ample, Fig. 6 summarizes the results of receptive field fluc-
tuation in a circuit of which the input receptive fields overlap
both in space and time, using 25 input cells (APPENDIX A).
Here, not only the spatial and spatial-frequency aspects of
stimuli were taken into account (as in the simulations rep-
resented in Figs. 4B and 5 in green), but also the temporal
and temporal-frequency aspects. The coordinates in Fig. 6A
represent the temporal (T ) and spatial (S ) extents of a recep-
tive field. The two dotted grid lines intersect at the preferred
readout receptive field size X∗r =(T ∗r , S ∗r ): a spatiotemporal
generalization of the result indicated by the dashed lines in
Fig. 5.

It is convenient to think of receptive field properties in
terms of a balance of adaptive and conservative tendencies.
The adaptive tendency is manifested by fluctuation of recep-
tive fields, underlying flexible and efficient allocation of re-
ceptive fields, as we show below. Yet this flexibility must
take place against a background of conservative processes;
otherwise the visual system would be unprepared for sens-
ing stimuli that are generally important but which are ab-
sent in the current stimulation. In the simulations for Fig. 6,
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the readout cell was set to preserve some of its properties.
We implemented this by enhancing one of the input weights,
which made the size of the readout receptive field tend to-
ward a point in (T , S ) marked by the white cross in Fig. 6:
the original size (T0, S 0) of the readout receptive field in all
simulations for Fig. 6.

Independently of initial conditions, the simulations
yielded a highly consistent result, summarized in Fig. 6A.
The plot is a map of the probabilities of Xr in the course of
one numerical simulation. Preferred size X∗r is the point in
(T, S ) at which the probability has the highest value, marked
by the intersection of white dotted lines. On multiple iter-
ations, each starting at the initial condition marked by the
white cross, the readout receptive field invariantly tended to
the same preferred size X∗r . The same result was obtained
when the initial conditions were selected for every iteration
at random.

In the simulations for Fig. 6A, the distribution of stimuli
was uniform. Next, we studied how biases in stimulation
affect the preferred size of readout receptive field. The dis-
tribution of speeds in the natural stimulation is not uniform
(e.g., Dong & Atick, 1995; Betsch, Einhäuser, Körding, &
König, 2004). In the simulations for Fig. 6B–D, the prevalent
speed of stimulation increased from low to high, indicated by
the probability density function plotted at top right of each
panel. The preferred receptive field size of the readout cell
shifted towards the receptive field size of input cells tuned to
speed similar to the prevalent speed. As the prevalent speed
increased, the preferred size of the readout receptive field
shifted further toward the prevalent speed. That is, in panel B,
where the prevalent speed was low, the preferred readout size
shifted toward the bottom right corner of the graph. And in
panel D, where the prevalent speed was high, the preferred
readout size shifted toward the top left corner.

Overall, behavior of the basic circuit can be summarized
in terms of a tradeoff of stability and variability. On the one
hand, readout receptive field tends toward a fixed size: pre-
ferred size X∗ biased toward the more likely stimuli. On the
other hand, the size of the readout receptive field fluctuates
in a manner that can be characterized by a functional relation
between the expected change of readout receptive field size
(the “amplitude of fluctuation”) and the distance of current
readout size from the preferred readout size |X − X∗|. We
summarize this relationship as

E[∆X] ∼ f (X), (10)

where E[∆X] is the expected amplitude of fluctuation and
f (X) is a function with a single global minimum, as in Fig. 5.

Global dynamics

In the previous section, we associated the stimulus-
dependent plasticity of neural circuits with random fluctu-
ations and drifts of receptive field size. We found that the
dynamics of receptive field size was described by a function
motivated by Gabor’s uncertainty principle. We have also
found that the distribution of receptive field characteristics
depended on the the statistics of stimulation.

Now we turn to a different level of modeling and consider
neuronal plasticity in terms of ensemble dynamics. We will
model an ensemble of neurons for which we examine steady-
state distributions of receptive field characteristics. We will
see that the allocation of receptive fields derived from the
stochastic formulation is remarkably similar to the allocation
found in biological vision and consistent with predictions of
efficient allocation (Fig. 1).

Model of global dynamics

Amplitude of size fluctuation

Given the definition of measurement uncertainty that applies
to the entire range of receptive field spatial and temporal ex-
tents (Equation 3), our model of receptive field size fluctua-
tion must capture the association of measurement uncertainty
and amplitude of fluctuation across an equally broad domain.
The general form of this association is

E[∆X] ∼ F [Uc(X)],

where Uc is the composite uncertainty (Equation 3) and F [·]
is an operator that establishes the correspondence between
properties of uncertainty and properties of receptive field size
fluctuations. We considered operatorF generated by random
walks of this form:

∆X = γUc(X)R, (11)

where R is a random process sampled from a bivariate nor-
mal distribution, and γ is a positive constant that represents
the rate at which measurement uncertainty Uc affects the
fluctuation. Below we show that on this formulation, fluctua-
tion of readout receptive field size has the desired properties
(Equation 13).

Random process R in Equation 11 can be thought of as a
model of stochastic motion of point Xi = (Ti, S i) on plane
(T, S ). Changes of Xi in regions of high uncertainty are on
average larger than in regions of low uncertainty, having the
effect that points Xi drift toward regions of low uncertainty,
as illustrated in Figs. 7–8. In APPENDIX B we demonstrate
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Figure 7. Consequences of stochastic tuning for single receptive fields. Coordinates of every panel represent the temporal and spatial
extents of receptive fields relative to the center of the region of interest marked by the white cross. (A) Effect of measurement uncertainty.
Initially all receptive fields (N = 1, 000) have the same parameters X0 = (T0,S0) marked by the white cross (at the same location in all
panels). Red dots represent the final sizes of receptive fields (“end points"), each after 700 iterations by Equation 11. The large yellow
circumference contains the region of permitted fluctuations (Equation 12). The contour plot in the background represents the measurement
uncertainty function (Equation 3) whose minimum is marked by the gray asterisk. The three trajectories composed by gray arrows illus-
trate 20 updates of three model neurons (arbitrarily selected for this illustration). The lengths of arrows are proportional to measurement
uncertainties at arrow origins, and arrow directions are sampled from an isotropic probability distribution (R in Equation 11). The inset
is a normalized histogram of all end points, indicating that receptive field sizes tend to drift toward lower measurement uncertainty. (B–
D) Effect of stimulation. Results of simulations of stochastic tuning performed as in A, but at three different prevailing speeds of stimulation
(Equation 24). The three columns show results for different prevailing speeds, increasing from B to D. The direction of receptive field drift
depends on the prevailing stimulus speed, indicated by the directed yellow markers in top plots, and by the high concentration of end points
in the histograms in bottom plots. Intersections of the white grid lines in bottom panels mark preferred locations of receptive fields, as in
Fig. 6. In the yellow directed markers (also used in Fig. 8A), the initial location of receptive fields is represented by a small disk and the
direction of receptive field drift is represented by a line to the mean end point of receptive field fluctuations.

that this behavior is predicted by a model in which fluctua-
tion of receptive field size is formalized as a continuous-time
stochastic process.

Biases of fluctuation

Measurement uncertainty is intrinsic to the visual system: it
does not depend on stimulation. But outcomes of measure-
ment also depend on the lasting properties of stimulation: an
extrinsic factor. Under natural conditions, stimulus speeds
are not distributed evenly (e.g., Dong & Atick, 1995; Betsch
et al., 2004) making neurons with certain speed preferences
more useful in one environment than another.

As we saw in our analysis of the basic circuit, recep-
tive field fluctuations are sensitive to biases in stimulation
(Fig. 6). The shift of preferred size toward the prevalent
speed (line S = veT for prevalent speed ve) in the parame-
ter space causes that the region of size fluctuation narrows
in the direction orthogonal to this line. In other words, ran-
dom process R in our definition of operator F is generally
anisotropic: the “steps” of Xi in the different directions on
the plane are not equally likely. The changes in spatial and
temporal extents of receptive fields are correlated, so that

“movements" of receptive fields in the space of parameters
are constrained to specific trajectories. The trajectories are
lines with slopes determined by cells’ estimate of expected
speed in the environment (see section Organization of dy-
namics below).

Constraints on dynamics

By the nature of input-readout connectivity, fluctuations of
receptive fields are confined to some vicinity of the initial
receptive field sizes:

X ∈ ΩX0 , (12)

where ΩX0 is a connected and bounded region in R2, with
reflecting boundary ∂ΩX0 , and where X0 is the original size
of the receptive field. The “reflecting” boundary means that,
if X were to escape ΩX0 , X was assigned a value inside the
boundary as if X was reflected from ∂ΩX0 (APPENDIX B).

Joint effects of adaptive and conservative tendencies in al-
location of receptive fields are illustrated in Fig. 7, for small
regions in the receptive field parameter space (T, S ). Panel A
illustrates the effects of measurement uncertainty alone, and
panel B illustrates how effects of measurement uncertainty
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Figure 8. Stochastic tuning of motion-sensitive cells across parameter space (T, S ). Parameters T and S correspond to the temporal and
spatial extents of receptive fields. (A) Local tendencies of receptive field fluctuations. The small directed markers represent mean directions
of receptive field fluctuation (Fig. 7). The inset on top right contains one such marker magnified in linear coordinates, as in Fig. 7B–D. (The
shape of local boundary Ω is different in the inset and in the main figure because of the logarithmic coordinates in latter.) The markers in red
represent a set of adjacent pathlines (see text). Measurement uncertainty is displayed in the background as a contour plot. The gray curve
represents optimal conditions (“optimal set") of speed measurement derived as in Gepshtein et al. (2007). The directed markers across point
to the optimal set. If not for conservation of receptive field size (Equation 12), the local tendencies from the locations in red would converge
on the white segment of the optimal set. (B–C) Results of stochastic tuning. The heat maps are normalized histograms of end-point densities
of receptive field tuning. In B, the histogram is computed for the conditions highlighted in red in panel A. In C, the histogram is computed
for the entire parameter space. (The focus of high density and the white segment in panel B are slightly misaligned because of an asymmetry
of cell distribution within the group of highlighted pathlines.)

are modulated by statistics of stimulation.

Range of fluctuation

In panel A, receptive fields are represented as points Xi =

(Ti, S i). The region circumscribed by the yellow boundary
is the range of fluctuation (Equation 12). It represents the
conservative tendency of receptive field size. All the recep-
tive fields shown in this figure had the same initial parame-
ter values and all underwent an equal number of stochastic
changes. The final parameter values of receptive fields are
marked by red points (“end points"). The evolution of three
receptive fields are visualized as trajectories in the parameter
space represented by series of connected black arrows. Ar-
row sizes illustrate the basic feature of this approach that the
variability of receptive fields depends on their measurement
uncertainty (Equation 11).

As mentioned in section Approach, receptive fields Xi

tend to drift toward regions in the parameter space where
measurement uncertainty is low (light regions in the back-
ground of Fig. 7A). This tendency is manifested by the high
concentration of end points near the boundary of the range
of fluctuations, toward the minimum of measurement uncer-
tainty.

Local tendency

The distribution of end points is also plotted in Fig. 7A, as a
normalized histogram (inset). The peak of distribution is the
local tendency of this stochastic process within the range of
fluctuation, determined by measurement uncertainty alone.
(In Fig. 8A we depict such local tendencies for many loca-
tions in the parameter space.)

We validated the results of computational experiments in
a steady-state analysis of receptive field fluctuations. The
steady state is understood here as the time-invariant solution
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of a Fokker-Plank equation (Gardiner, 1996) with zero drift
and diffusion coefficients that depend on local measurement
uncertainty U(X). The results of our simulations are consis-
tent with the analytic prediction: the asymptotic distribution
of the probability density of receptive field parameters X is

p(X) ∼ 1/U(X)2. (13)

In other words, the stochastic process tends to distribute re-
ceptive fields according to their measurement uncertainty
U(X), such that the maximum of p(X) occurs at the mini-
mum of U(X) (APPENDIX C).

Effects of stimulus speed

Besides the intrinsic factors, outcomes of receptive field fluc-
tuations also depend on regularities of stimulation. Fig. 7B–
D illustrates local tendencies of receptive field fluctuation
under three different prevailing speeds of stimulation (in-
creasing from left to right), in the same form as the inset
of panel A. Evidently, local tendencies depend on the pre-
vailing speed: the higher the prevailing speed the steeper the
direction from the initial receptive field size to the mean end
point of fluctuations. The local tendencies are depicted in the
top panels of Fig. 7B–D by directed markers, each made of a
filled circle at the initial parameters of receptive fields, from
which a line is drawn to the mean end point of fluctuations.

Organization of dynamics

Fig. 8A is a summary of the local tendencies of receptive field
fluctuation across the entire parameter space (T, S ). Each
local tendency is represented by a marker directed from ini-
tial parameters of receptive fields to the mean end points of
their fluctuations, as explained in Fig. 7B. The markers form
a global pattern with features as follows.

Pathlines

The local tendencies form a flow field that consists of dis-
tinct “streaks" which we call pathlines. In Fig. 8A we illus-
trate this notion by isolating a set of markers (highlighted
in red). If not for the conservation of receptive field size
(Equation 12), receptive field representations contained in
the highlighted region would “travel" up and down along the
pathlines.

The pathlines could be constructed by iteration, placing
new initial parameters of receptive fields in the previous
mean end points. The pathlines can also be derived analyti-
cally from Equations 11–12 as we show in APPENDIX C.

Optimal set

Fig. 8A illustrates how the local tendencies within pathlines
switch directions in mid-path. All the switch points across
the pathlines form a curve shown in the figure in gray and
white. This curve is notable in two respects: (1) If not for the
conservation of receptive field size (Equation 12), the recep-
tive fields would all converge on the curve. We indicate this
in Fig. 8A by the white segments of the curve, where recep-
tive fields from the zones highlighted in red would converge.
(2) The curve is also the optimal set of speed measurement
(“optimal set") predicted by a theory of efficient resource al-
location (Gepshtein et al., 2007) (APPENDIX C).

Fig. 8B–C illustrate the outcomes of receptive field
size fluctuations using the density histograms introduced in
Fig. 7. Fig. 8B is a histogram for receptive fields that belong
to the pathlines shown in Fig. 8A in red. The histogram in-
dicates that the receptive fields tend to concentrate near the
optimal set of speed measurement (the gray curve).

Fig. 8C is a histogram for all the receptive fields. The
distribution of receptive field density has a pattern similar
to the one predicted by the theory of efficient resource allo-
cation (Fig. 1A) and it corresponds to the pattern of motion
sensitivity observed in human vision (Kelly, 1979).

Discussion

We used an idealized visual system to investigate how visual
sensitivity is controlled in face of noisy neural mechanisms
and variable stimulation. We implemented generic properties
of neuronal plasticity and explored regularities of the ensu-
ing local and global dynamics of neuronal receptive fields.
We found that the noisy variation of receptive fields is in fact
beneficial to system’s performance. The stochastic changes
of receptive fields and regularities of stimulation jointly steer
neuronal ensembles toward an efficient distribution of recep-
tive fields. This distribution is predicted by a theory of effi-
cient allocation of receptive fields, and it is consistent with a
well-known behavioral characteristic of spatiotemporal sen-
sitivity in human vision (Fig. 1A).

Previous studies suggested that the observed distribution
of visual sensitivity is a result of optimization of measure-
ment by large neuronal ensembles (Watson, Barlow, & Rob-
son, 1983; Gepshtein et al., 2007, 2013). Here we proposed
a simple mechanism for how such optimization can be at-
tained. Notably, the efficient allocation of receptive fields in
multiple motion-sensitive cells emerges in a process that is
purely local and unsupervised.

The optimization has a local genesis in that the fluctua-
tion of receptive field properties in every cell is independent
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of fluctuations in other cells. The optimization is driven only
by the local measurement uncertainty and by the individual
stimulation of every cell.

The optimization is unsupervised in that it unfolds with-
out having the statistics of stimulation explicitly represented
in the system, and in that this process requires no agency or
specialized system for coordinating the allocation of recep-
tive fields. In other words, the efficient allocation is an out-
come of neuronal self-organization. The stochastic behavior
of multiple cells results in a “drift” of their receptive fields
in the direction of low uncertainty of measurement, as if the
system sought stimuli that could be measured reliably (cf.
“infotaxis” in Vergassola et al., 2007 and minimization of
free energy in Friston et al., 2009). Such behavior makes the
system highly flexible and able to rapidly adapt to the chang-
ing environment, differently for different aspects of stimula-
tion (cf. de Ruyter van Steveninck et al., 1994).

Stochastic methods have been successfully used in model-
ing dynamics of neural cells and cell populations (Harrison,
David, & Friston, 2005; Knight, 2000; Ernst & Eurich, 2002;
Dayan & Abbott, 2005). Such models addressed very fast
processes: from activation of individual ion channels to gen-
eration of spikes and spike trains. These models helped
understanding how elementary (microscopic) neural events
add up to macroscopic phenomena (such as evoked response
potentials; Harrison et al., 2005). Here we used stochastic
methods to investigate neural events on a much slower tem-
poral scale: variation of cell responses manifested in their
receptive fields.

Theories of sensory optimization belong on a spectrum
between stimulus-bound and system-bound extremes. On
the stimulus end of this spectrum, the emphasis is on effi-
cient representation of stimuli, such as in theories of efficient
coding (where neuronal selectivity is conceived as the ba-
sis of efficient decomposition of stimuli, e.g., Barlow, 1961;
Olshausen & Field, 1996; Bell & Sejnowski, 1997) and in
theories of perceptual inference (where prior representation
of stimulus parameters is key, e.g., Simoncelli & Olshausen,
2001; Geisler, 2008; Maloney & Zhang, 2010). On the sys-
tem end, theories are primarily concerned with intrinsic prop-
erties of neural systems, such as dynamics of neuronal popu-
lations (Sutton & Barto, 1981; Gong & van Leeuwen, 2009;
Friston & Ao, 2011; van den Berg et al., 2012) and receptive
fields (Tsodyks et al., 1997; Ozeki et al., 2009).

The present study has gravitated toward the system end
of the spectrum since previous work showed that intrinsic
constraints of sensory measurement are sufficient to explain
the large-scale sensory characteristics in question (Gepshtein
et al., 2007, 2013). Here we found, in addition, that the

noise intrinsic to neural systems can be instrumental in sen-
sory systems tuning themselves for changes in stimulation
(cf. Rokni, Richardson, Bizzi, & Seung, 2007 in motor sys-
tems). We propose that fluctuation of receptive field size is
a means of stochastic optimization of neural function (cf.
Spall, 2003; Ermentrout, Galan, & Urban, 2008; Faisal,
Selen, & Wolpert, 2008; called “stochastic facilitation” in
McDonnell & Ward, 2011).

As in some studies mentioned above (e.g., Knight, 2000),
we considered a system of uncoupled elements. Even though
the efficient allocation of receptive fields is possible without
cell communication, efficiency of this system could be im-
proved by having cells interact. On the one hand, receptive
fields themselves result from computations both within in-
dividual neurons (Jia et al., 2010; Segev & London, 2002;
London & Häusser, 2005) and within neural circuits (Bishop
& Nasuto, 1999; Laughlin & Sejnowski, 2003). On the
other hand, cell assemblies afford more precise and expedi-
tious estimation of sensory uncertainties than individual cells
(Johnson, 2004; Knill & Pouget, 2004).

Future work should investigate effects of cell coupling
on self-organization and optimization of sensory systems, in
particular the additional degrees of flexibility that cell com-
munication is expected to provide. For example, having cells
with similar tuning characteristics inhibit one another will
help the system to “even out" the distribution of receptive
fields, thus preventing drain of resources from some less
common but useful stimuli. In contrast, having cells with
different tuning characteristics excite one another will expe-
dite convergence to system’s optimal state: a behavior known
as “swarm optimization" (Kennedy & Eberhart, 1995; Pratt
& Sumpter, 2006).

Acknowledgments. We thank K. J. Friston, J. Snider and
S. Saveliev for helpful comments about an earlier ver-
sion of this manuscript. This work was supported by the
Kavli Foundation, the Swartz Foundation, NSF 1027259,
NIH EY018613, ONR MURI N00014-10-1-0072, the Royal
Society International Joint Research Grant JP080935, and an
Odysseus grant from the Flemish Organization for Science
FWO.

References

Abraham, W. C., & Bear, M. F. (1996). Metaplasticity: the plastic-
ity of synaptic plasticity. Trends in Neuroscience, 19, 126–130.

Barlow, H. B. (1961). Possible principles underlying the trans-
formations of sensory messages. In W. A. Rosenbluth (Ed.),
Sensory communication (pp. 217–234). Cambridge, MA, USA:
MIT Press.



This article may not exactly replicate the final version published in the APA journal (http://www.apa.org/journals/rev/). It is not the copy of record.

14 SENSORY OPTIMIZATION BY STOCHASTIC TUNING

Barlow, H. B. (1969). Pattern recognition and the responses of
sensory neurons. Annals of the New York Academy of Sciences,
156, 872–881.

Bell, A., & Sejnowski, T. J. (1997). The ‘independent components’
of natural scenes are edge filters. Vision Research, 37, 3327–
3338.

Betsch, B. Y., Einhäuser, W., Körding, K. P., & König, P. (2004).
The world from a cat’s perspective – statistics of natural videos.
Biological Cybernetics, 90(1), 41–50.

Bi, G., & Poo, M. (2001). Synaptic modification by correlated
activity: Hebb’s postulate revisited. Annual Review of Neuro-
science, 24, 139–166.

Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory
for the development of neuron selectivity: orientation specificity
and binocular interaction in visual cortex. Journal of Neuro-
science, 2, 32–48.

Bishop, J. M., & Nasuto, S. J. (1999). Communicating neurons–
an alternative connectionism. In Proceedings of the weightless
neural network workshop, york, uk.

Cherry, C. (1978). On human communication: a review, a survey,
and a criticism. Cambridge, Massachusetts: MIT Press.

Dan, Y., Dong, D., & Reid, R. C. (1996). Efficient coding of natural
scenes in the lateral geniculate nucleus: Experimental test of a
computational theory. Journal of Neuroscience, 16, 3351–3362.

Daugman, J. G. (1985). Uncertainty relation for the resolution
in space spatial frequency, and orientation optimized by two-
dimensional visual cortex filters. Journal of the Optical Society
of America A, 2(7), 1160–1169.

Dayan, P., & Abbott, L. F. (2005). Theoretical neuroscience: Com-
putational and mathematical modeling of neural systems (1st
ed.). The MIT Press.

de Ruyter van Steveninck, R. R., Bialek, W., Potters, M., & Carlson,
R. H. (1994). Statistical adaptation and optimal estimation in
movement computation by the blowfly visual system. Proceed-
ings of IEEE Conference on Systems, Man, and Cybernetics, 1,
302–307.

Dong, D., & Atick, J. (1995). Statistics of natural time-varying
images. Network: Computation in Neural Systems, 6, 345–358.

Duff, G. F. D. (1956). Partial differential equations. University of
Toronto Press.

Ermentrout, G. B., Galan, R. F., & Urban, N. N. (2008). Reliability,
synchrony and noise. Thrends in Neuroscience, 31, 428–434.

Ernst, U. A., & Eurich, C. W. (2002). Cortical population dynamics
and psychophysics. In M. A. Arbib (Ed.), The handbook of brain
theory and neural networks: Second edition (pp. 294–300). The
MIT Press.

Faisal, A. A., Selen, L. P. J., & Wolpert, M. (2008). Noise in the
nervous system. Nature Reviews Neuroscience, 9, 292–303.

Friston, K. J., & Ao, P. (2011). Free energy, value, and attractors.
Computational and Mathematical Methods in Medicine, 1–27.
doi: 10.1155/2012/937860

Friston, K. J., Daunizeau, J., & Kiebel, S. J. (2009). Reinforcement
learning or active inference? PLoS ONE, 4(7), e6421. doi:
10.1371/journal.pone.0006421

Gabor, D. (1946). Theory of communication. Part 1: The analysis
of information. Electrical Engineers - Part III: Radio and Com-
munication Engineering, Journal of the Institution of , 93(26),
429–441.

Gabor, D. (1952). Lectures on communication theory. Technical
report, 238. (Fall Term, 1951.)

Gardiner, C. W. (1996). Handbook of stochastic methods: For
physics, chemistry and the natural sciences (2nd ed.). Springer.

Geisler, W. S. (2008). Visual perception and the statistical prop-
erties of natural scenes. Annual Review of Psychology, 59(1),
167–192.

Gepshtein, S., Lesmes, L. A., & Albright, T. D. (2013). Sensory
adaptation as optimal resource allocation. Proceedings of the
National Academy of Sciences, USA, 110(11), 4368–4373.

Gepshtein, S., Tyukin, I., & Kubovy, M. (2007). The economics of
motion perception and invariants of visual sensitivity. Journal
of Vision, 7(8), 1–18.

Glezer, V. D., Gauzel’man, V. E., & Iakovlev, V. V. (1986). Princi-
ple of uncertainty in vision. Neirofiziologiia = Neurophysiology,
18(3), 307–312. (PMID: 3736708)

Gong, P., & van Leeuwen, C. (2009). Distributed dynamical com-
putation in neural circuits with propagating coherent activity
patterns. PLoS Computational Biology, 5(12), e1000611. doi:
10.1371/journal.pcbi.1000611

Harrison, L. M., David, O., & Friston, K. J. (2005). Stochas-
tic models of neuronal dynamics. Philosophical Transactions
of the Royal Society of London. Series B, Biological Sciences,
360(1457), 1075–1091. (PMID: 16087449)

Hebb, D. O. (1949). The organization of behavior. New York: John
Wiley.

Heess, N., & Bair, W. (2010). Direction opponency, not quadra-
ture, is key to the 1/4 cycle preference for apparent motion in
the motion energy model. The Journal of Neuroscience, 30(34),
11300–11304.

Hietanen, M. A., Crowder, N. A., Price, N. S. C., & Ibbotson, M. R.
(2007). Influence of adapting speed on speed and contrast cod-
ing in the primary visual cortex of the cat. The Journal of Phys-
iology, 584(Pt 2), 451–462. (PMID: 17702823)

Jia, H., Rochefort, N. L., Chen, X., & Konnerth, A. (2010). Den-
dritic organization of sensory input to cortical neurons in vivo.
Nature, 464(7293), 1307–1312. (PMID: 20428163)

Johnson, D. H. (2004). Neural population structures and conse-
quences for neural coding. Journal of Computational Neuro-
science, 16(1), 69–80. (PMID: 14707545)

Jones, A. J., & Palmer, L. (1987). An evaluation of the two-
dimensional Gabor filter model of simple receptive fields in cat
striate cortex. Journal of Neurophysiology, 58(6), 1233–1258.

Jones, M. C., Marron, J. S., & Sheather, S. J. (1996). A brief survey
of bandwidth selection for density estimation. Journal of the
American Statistical Association, 91(433), 401–407.

Kelly, D. H. (1975). Spatial frequency selectivity in the retina.
Vision Research, 15(6), 665–672. (PMID: 1138482)

Kelly, D. H. (1979). Motion and vision. II. stabilized spatio-
temporal threshold surface. Journal of the Optical Society of



This article may not exactly replicate the final version published in the APA journal (http://www.apa.org/journals/rev/). It is not the copy of record.

JURICA, GEPSHTEIN, TYUKIN, VAN LEEUWEN 15

America, 69(10), 1340–1349.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.

In Proceedings of IEEE international conference on neural net-
works (Vol. 4, pp. 1942–1948).

Knight, B. W. (2000). Dynamics of encoding in neuron popula-
tions: some general mathematical features. Neural Computa-
tion, 12(3), 473–518. (PMID: 10769319)

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of
uncertainty in neural coding and computation. Trends in Neuro-
sciences, 27(12), 712–719.

Krekelberg, B., van Wezel, R. J. A., & Albright, T. D. (2006).
Adaptation in macaque MT reduces perceived speed and im-
proves speed discrimination. J Neurophysiol, 95(1), 255–270.

Laughlin, S. B., & Sejnowski, T. J. (2003). Communication in
neuronal networks. Science, 301(5641), 1870–1874.

London, M., & Häusser, M. (2005). Dendritic computation. Annual
Review of Neuroscience, 28, 503–532. (PMID: 16033324)

MacKay, D. M. (1981). Strife over visual cortical function. Nature,
289, 117–118.

Maloney, L. T., & Zhang, H. (2010). Decision-theoretic models
of visual perception and action. Vision Research, 50(23), 2362–
2374. doi: 10.1016/j.visres.2010.09.031

Marcelja, S. (1980). Mathematical description of the response by
simple cortical cells. Journal of the Optical Society of America,
70, 1297–1300.

McDonnell, M. D., & Ward, L. M. (2011). The benefits of noise in
neural systems: bridging theory and experiment. Nature Reviews
Neuroscience, 12, 415–426.

Moran, J., & Desimone, R. (1985). Selective attention gates visual
processing in the extrastriate cortex. Science, 229(4715), 782–
784. (PMID: 4023713)

Nakayama, K. (1985). Biological image motion processing: a re-
view. Vision Research, 25(5), 625–660.

Nakayama, K., & Silverman, G. H. (1985). Detection and dis-
crimination of sinusoidal grating displacements. Journal of the
Optical Society of America. A, Optics and Image Science, 2(2),
267–274.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell
receptive field properties by learning a sparse code for natural
images. Nature, 381, 607–609.

Ozeki, H., Finn, I. M., Schaffer, E. S., Miller, K. D., & Ferster, D.
(2009). Inhibitory stabilization of the cortical network underlies
visual surround suppression. Neuron, 62(4), 578–592.

Paulsen, O., & Sejnowski, T. J. (2000). Natural patterns of activity
and long-term synaptic plasticity. Current Opinion in Neurobi-
ology, 10(2), 172–180.

Petrovski, I. G. (1966). Ordinary differential equations. Prentice-
Hall.

Pratt, S. C., & Sumpter, D. J. T. (2006). A tunable algorithm for col-
lective decision-making. Proceedings of the National Academy
of Sciences of the United States of America, 103(43), 15906–
15910.

Resnikoff, H. L. (1989). The illusion of reality. New York, NY,
USA: Springer-Verlag New York, Inc.

Rodman, H. R., & Albright, T. D. (1987). Coding of visual stimulus
velocity in area MT of the macaque. Vision Research, 27(12),
2035–2048.

Rokni, U., Richardson, A. G., Bizzi, E., & Seung, H. (2007). Motor
learning with unstable neural representations. Neuron, 54, 653–
666.

Segev, I., & London, M. (2002). Dendritic processing. In M. A. Ar-
bib (Ed.), The handbook of brain theory and neural networks:
Second edition (pp. 324–332). The MIT Press.

Seung, H. (2003). Learning in spiking neural networks by rein-
forcement of stochastic synaptic transmission. Neuron, 40(6),
1063–1073.

Simoncelli, E. P., & Olshausen, B. (2001). Natural image statistics
and neural representation. Annual Review of Neuroscience, 24,
1193–1216.

Spall, J. C. (2003). Introduction to stochastic search and optimiza-
tion. New York, NY, USA: John Wiley & Sons, Inc.

Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of
adaptive networks: Expectation and prediction. Psychological
Review, 88(2), 135–170.

Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., & McNaughton,
B. L. (1997). Paradoxical effects of external modulation of in-
hibitory interneurons. Journal of Neuroscience, 17, 4382–4388.

van den Berg, D., Gong, P., Breakspear, M., & van Leeuwen, C.
(2012). Fragmentation: loss of global coherence or breakdown
of modularity in functional brain architecture? Frontiers in Sys-
tems Neuroscience, 6(20). doi: 10.3389/fnsys.2012.00020

Vergassola, M., Villermaux, E., & Shraiman, B. I. (2007). ’In-
fotaxis’ as a strategy for searching without gradients. Nature,
445(7126), 406–409.

Vislay-Meltzer, R. L., Kampff, A. R., & Engert, F. (2006). Spa-
tiotemporal specificity of neuronal activity directs the modifi-
cation of receptive fields in the developing retinotectal system.
Neuron, 50(1), 101–114. (PMID: 16600859)

Watson, A. B. (1990). Optimal displacement in apparent motion
and quadrature models of motion sensing. Vision Research,
30(9), 1389–1393.

Watson, A. B., & Ahumada, A. J. (1985). Model of human visual-
motion sensing. Journal of the Optical Society of America. A,
Optics and Image Science, 2(2), 322–341. (PMID: 3973764)

Watson, A. B., Barlow, H. B., & Robson, J. G. (1983). What does
the eye see best? Nature, 302, 419–422.

Womelsdorf, T., Anton-Erxleben, K., & Treue, S. (2008). Recep-
tive field shift and shrinkage in macaque middle temporal area
through attentional gain modulation. Journal of Neuroscience,
28(36), 8934–8944.



This article may not exactly replicate the final version published in the APA journal (http://www.apa.org/journals/rev/). It is not the copy of record.

16 SENSORY OPTIMIZATION BY STOCHASTIC TUNING

Appendix A
Details of numerical simulations

Stimuli

Unless stated otherwise, we used natural stimuli. The spatial and
temporal amplitude spectra of natural stimuli followed a power law
(function 1/ f ) (Dong & Atick, 1995; Dan, Dong, & Reid, 1996).
Stimuli were obtained using two methods: by extracting a single
row of pixels from a movie of a natural scene or by generating a ran-
dom stimulus for which the spectral amplitudes followed function
1/ f and phases were drawn from a uniform distribution on interval
[0, 2π). Stimuli from both sources were then preprocessed. At low
frequencies, stimulus spectra were flattened, simulating the output
of retina and LGN (Barlow, 1969; Dan et al., 1996). Locations x
and frequencies f of the stimuli that triggered input-cell responses
(Equations 4 and 8) were determined by computing local maxima in
the outputs of the convolution of stimuli with receptive field func-
tions on x and f . Locations and frequencies obtained this way had
near uniform distributions. To accelerate large-scale simulations,
stimulus parameters (x, f ) were drawn from uniform distribution
on intervals that fully covered the largest receptive field of the input
layer.

Stimulus speed was defined as ratio v = ft/ fs (Kelly, 1979).
(Sets of pairs of ft and fs that correspond to the same ratio v form
constant-speed lines, as explained in Fig. 1A.) To derive amplitude
spectra across speeds we integrated spatiotemporal spectra of the
stimulus along the constant-speed lines. The distribution of
amplitudes followed the 1/ f function. Assuming the whiten-
ing of low frequencies (as in the domains of space and time),
we obtained a uniform distribution of speeds.

Simulations of idealized neurons

Measurement in one dimension

The results summarized in Figs. 2–5 were obtained using a
basic neural circuit that consisted of two input cells and one
readout cell. Input receptive field sizes were S i ∈ {1.0, 2.0}.
On every iteration, random stimuli χ = (x, f ), each char-
acterized by location x and frequency content f , were sam-
pled from a uniform distribution. Every time, we computed
10 cell responses yzi (Equation 9) while the input-readout
weights were kept constant. The readout cell generated a
spike when the weighted sum of its inputs yr =

∑
i wiyzi

exceeded threshold Θ. Threshold Θ was equal to the ex-
pected value of the weighted sum of input responses yr dur-
ing K = 10 most recent stimulations (Equation 6).

Weight wi of i-th neuron was incremented by ∆wi = εci,
where ε = 0.1 and where

ci =

∑
k yz(k)

i y(k)
r∑

k yz(k)
i

(14)

was the coincidence rate expressed as average of readout
spikes (out of K = 10 most recent spikes) weighted by coin-
cident responses of i-th input cell. The weight decayed with
rate τ = 0.2.

Effective sizes of readout receptive field

S r =

∑
i wiS i∑

i wi
(15)

were collected from Ne = 20, 000 iterations in total. The nor-
malized histogram of readout receptive field sizes is plotted
in Fig. 4B. Values S r were divided to NB = 31 bins of equal
size on range [S ∗r − 0.05, S ∗r + 0.05]. Changes of readout size
∆S r = |S r( j + 1) − S r( j)| were recorded separately for each
bin. The average (expected) value of changes of receptive
field size is plotted in Fig. 2B, only for bins that contained
more than 0.5% of entries in the most populous bin.

Spatiotemporal measurement

The results of simulations described in this section are sum-
marized in Fig. 6. The same mechanism of plasticity as in
Fig. 4 was implemented, now in a circuit of 25 input cells
and one readout cell, all having nested spatiotemporal re-
ceptive fields. Sizes of input receptive fields were sampled
from a grid formed by five speeds v ∈ {1/4, 1/2, 1, 2, 4} and
five temporal sizes T ∈ {1/4,

√
1/2, 1/2,

√
2, 1}. Input-readout

weights wi were initialized such that original receptive field
size was X0 = (0.5, 0.5). Over the course of Ne = 20, 000
epochs of simulation, stimuli were presented to input re-
ceptive fields (100 independently generated random stimuli
χ = (x, fx, t, ft) per epoch), and weights wi were updated
according to Equation 7. Coincidence rate ci was estimated
over 100 stimulus presentations as in Equation 14.

Stimulus bias in the basic circuit

Stable-state input-readout weights depend on stimulus statis-
tics. In Fig. 9 we illustrate this by plotting distributions of
input-readout weights for different distributions of stimulus
speeds. For this illustration, we considered input cells tuned
to speed, with weighting functions

ωi(v j) = exp
[
−

(v j − vi)2

2v2
e

]
,

where ωi is the tuning function of i-th input cell, vi is the
tuning speed (i.e., the speed at which the tuning function has
the highest value), and v j is a sample of stimulus speed. In
contrast to the input-cell response function used previously
(Equation 9), here the input response function was

yzi(x, fx) = β yi(x)zi( fx) + (1 − β) ωi(v j), (16)
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Figure 9. Illustration of stimulus bias in the basic circuit. Panels A–C illustrate outcomes of simulations of the basic circuit using three
different distributions of stimulus speed. The stimulus distributions are represented by green curves in the bottom panels, with the mean
stimulus speed increasing from A to C. Middle panels (ωi) illustrate tuning functions (in red) for three input cells centered on tuning speeds
vi, i ∈ {1, 2, 3}. In the top panels, the blue boxplots represent input-readout weights wi from over 5, 000 iterations, using stimuli sampled from
the speed distributions in the corresponding bottom panels. The top panels also contain plots (in black) of input-readout weights observed
for stimuli sampled from a uniform distribution of speed (the same for all top panels). (In the boxplots, the boxes mark the 25th and 75th
percentiles, and the whiskers mark the 10th and 90th percentiles, of the distribution of weights.)

where β is a constant (0 ≤ β ≤ 1) that determined the strength
of speed tuning.

In Fig. 9, spiking activity of three input cells with sizes
S i ∈ {0.5, 1.0, 2.0} encoded the distance of stimulus speed
from the tuning speed of the cell (β = 0.75, Equation 16).
Stimulus speed was sampled from three different distribu-
tions of stimulus speed shown on the bottom of Fig. 9 (green
curves). The magnitudes of input-readout weights averaged
over 5, 000 iterations in each of the three regimes of stimula-
tion are plotted on top of Fig. 9.

Stimulus bias in the generalized circuit

In simulation of ensemble the effect of speed prevalence on
circuit plasticity was implemented by introducing biases of
weights wi

• Conservatism of the size of receptive fields was im-
plemented by giving advantage to the original input-
readout weights at which readout receptive field size
was X0 = (T0, S 0) = (0.5, 0.5):

∆wi = αc wi exp
[
−

(Ti − T0)2

2T 2
0

−
(S i − S 0)2

2S 2
0

]
, (17)

• Conservatism of the speed preference was imple-
mented by giving advantage to those parameters of re-
ceptive fields at which spatiotemporal size ratio vi =

S i/Ti was similar to the prevalent (mean) speed of
stimulation ve:

∆wi = αv wiexp
[
−

(vi − ve)2

2v2
e

]
, (18)

Constants (αc, αv) are non-negative constants that control the
degree of weight modulation. Their values for computation
of conservative tendencies in the two cases were (0.05, 0) for
panel A, and (0.05, 0.1) for panels B–D.

Simulations of Poisson neurons

Responses of input cells were modeled as homogeneous
Poisson processes. Fig. 10 is an example of spike sequence
from one such simulation. The normalized mean firing rate
of an input cell was:

ri = exp
(
− 0.5(x/S i)2

)
,

where x is the distance of the stimulus from the center of
the receptive field. For a cell with maximum firing rate
rmax, the normalized firing rate is ri = r∗i /rmax, where r∗i is
the absolute firing rate, and the probability that n spikes oc-
curred within interval ∆t is governed by a Poisson distribu-
tion (Equation 1.29 in Dayan & Abbott, 2005). Coincidence
rate ci was computed using Equation 14 for binary input cell
responses yzi ∈ {0, 1} and K = 40 (which includes the entire
range of Fig. 10). Here the coincidence rate expresses the
fraction of i-th input-cell spikes that coincided with readout
spikes.

In the simulation for Fig. 10, input-readout weights were
fixed at w1 = 0.3 and w2 = 0.7 (for the input cells with sizes
S 1 < S 2) and readout threshold was Θ = 1.1 × max{wi}, en-
suring that activation of one input cell was unlikely to trigger
a readout spike in this illustration. This illustration makes it
clear that readout spikes were triggered in two cases: when
both input cells fired and when the input cell with the larger
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Figure 10. Illustration of simulated spiking activity in input and readout cells. Input responses were modeled using a homogeneous
Poisson spike generator. Blue and green marks indicate the timing of spikes in input cells I1 and I2 within 200 ms after stimulus presen-
tation. In this illustration, the normalized response rates of input cells are r1 = 0.6 and r2 = 0.9 and the maximal firing rate rmax is 200.
Red bars mark the timing of readout cell spikes. The gray regions enclose input spikes coincident with readout spikes. Since cell I2 tended
to respond when cell I1 responded, thus activating the readout cell, many spikes of cell I1 were followed by readout spikes, but spikes of
cell I2 often elicited no readout spikes. The effect of spike coincidence on input-readout weights is represented by the circles in top two
rows. The filled and unfilled circles stand, respectively, for increments and decrements of weight. Coincidence rates (Equation 14) for this
illustration are c1 = 12/18 = 0.67 and c2 = 14/26 = 0.54.

weight (here w2 = 0.7) fired because of a slow decay of ac-
tivity following a previous excitation.

Coincidence rate ci is low for input cells that fire when
other input cells do not. Low ci is likely when a stimulus
falls on the part of input receptive field that does not overlap
with receptive fields of other input cells. The probability of
such “isolated" spikes is high in circuits with large variabil-
ity of input receptive field sizes, where small receptive fields
overlap with only small parts of larger receptive fields. As
a result, there is a monotonic relationship between receptive
field size and input-readout weight: the smaller the input re-
ceptive field the larger its weight, supporting the notion that
the circuit behaves as if it minimizes the uncertainty of mea-
surement of location.

Size fluctuation

Fig. 7A is an illustration of the update rule of Equation 11.
The contour plot in the background represents some uncer-
tainty function of the form of Equation 3. Initial parameters
of 1, 000 receptive fields were set to X = (0, 0). R was sam-
pled from an isotropic normal distributionN(0, I), where I is
an identity matrix.

Fig. 7B–D illustrate the conservation of tuning to speed. Re-
ceptive field fluctuations were confined to elliptic regions
(Equation 25), the major axes of which were aligned with the
locally estimated speeds (v̄i ∈ {0.1, 1.0, 10.0}, respectively
in panels B, C and D). The elliptic regions were centered at
X0 = (0, 0) and were defined as

ΩX0 = {X ∈ R2| XT A(v̄i)X ≤ 1}, (19)

where A(·) is an operator that controls the regions’ shapes and
orientations (APPENDIX B). On this definition, domains ΩX0

change their orientations in response to changes in statistics
of stimulation.

Pathlines

The pathlines in Fig. 8 have a simple analytic form derived
in APPENDIX C (section Derivation of pathlines). For exam-
ple, if v̄i(X) is the expected speed of stimulation, ve, then the
pathline through X0 = (T0, S 0) is

S = veT + C0,

for C0 = S 0 − veT0 (Equation 31). The red curve in Fig. 8B
represents such a pathline for one instance of X0.

Kelly function

Simulated Kelly function

Measurement uncertainty was as in Equation 3, with
λi∈{X̃,T̃ ,X,T } = {0.012, 0.0013, 1.3234, 0.3}. Initial locations X0

were randomized to cover the parameter space uniformly.
Receptive fields were first distributed across speeds accord-
ing to probability distribution p(χ) ∼ 1/U(χi) where χi are
locations of minimal measurement uncertainty on cell path-
lines. Expected speed v̄i(X) = 0.353 (Equation 24) was the
same for all receptive fields, thus implementing the extreme
case of all the cells having very large receptive fields, i.e., in-
tegrating speed on the entire open interval v ∈ (0,∞). Fluctu-
ations of receptive field parameters T and S were according
to Equation 11 with γ = 0.1 and Rk ∼ N(0, 1). Fluctua-
tions were constrained to bands in the parameter space de-
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scribed in section Stochastic optimization of receptive field
size (Fig. 7), within boundaries centered on initial locations
X0 such that ||X − X0||

2 ≤ 0.5X0.
Because of the initial randomization of cell locations,

some cells could not reach optimal locations by fluctuations
alone: their fluctuation boundaries ΩX0 (Equation 12) did
not contain minima of the uncertainty function. Such cells
could still reach optimal locations, since X0 of all cells could
change, although on a slow scale. Location X0 were updated
to an estimate of local tendency within the previous fluctu-
ation boundary after each N iterations (here N = 50). (The
local tendencies were computed as in Fig. 7, except the steps
of X were normalized by the amplitude of uncertainty change
within ΩX0 . The normalization insured that estimates of local
tendency were comparable after equal numbers of iterations
at different locations in the parameter space.) Only in the re-
ceptive fields removed from the minimum of uncertainty, the
resulting changes of X0 were significant because there the
differences between X0 and local tendencies were large. The
imprecision (uncertainty) in estimation of local tendencies
prevented the cells from lingering at the optimal locations,
which is why the cells did not all converge at the minima of
uncertainty. Changes of ΩX0 reached stable states after sev-
eral thousands of iterations, whereas local tendencies (within
ΩX0 ) reached stable states after tens of iterations.

Human Kelly function (Fig. 1A)

The contour plot of the human spatiotemporal sensitivity
function (Fig. 1A and Equation 8 in Kelly, 1979) is rendered
using a color map normalized by maximal sensitivity. The
function was derived in the frequency domain (Kelly, 1979),
here transformed to space-time using the fact that motion
detectors are tuned to quarter-cycle displacement of moving
stimuli (Nakayama, 1985; Gepshtein et al., 2007; Nakayama
& Silverman, 1985; Watson, 1990; Heess & Bair, 2010).
Panel B: The plot of sensitivity obtained by simulations de-
scribed in section Emergent contrast sensitivity characteris-
tic (Fig. 1B above.

Computations of density and sensitivity

Receptive field density was evaluated by linear superposition
of two-dimensional Gaussian functions

e
− 1

2

(
T−Ti
kTi

)2
− 1

2

(
S−S i
kS i

)2

,

where (Ti, S i) are receptive field parameters. The linear
bandwidth parameter k = 0.2 was selected to obtain a smooth
unimodal distribution of density (M. C. Jones, Marron, &
Sheather, 1996).

The sensitivity was calculated by linear superposition of
individual cell sensitivities (Kelly, 1979, 1975). The tuning
of individual cells to spatial and temporal frequencies was
assumed to have profile(

e
f0

)2

f 2e−2
∣∣∣∣ f

f0

∣∣∣∣,
where f0 is the tuning frequency (Kelly, 1975). The sensi-
tivity function was computed in the frequency domain and
transformed to space-time as in Fig. 1.

Appendix B
Receptive field dynamics

We model systems of motion-sensitive neurons with recep-
tive fields characterized by two parameters: spatial extent S
and temporal extent T . We view these parameters as random
processes that depend on the uncertainty of measurement by
receptive fields:

∆X = γU(X) R, (20)

where

• ∆X = (∆T,∆S ) is a change of parameters X = (T, S ),

• U(X) is uncertainty of measurement,

• R is sampled from a bivariate normal random process,
N(0, 1),

• γ is a positive constant that represents the rate with
which measurement uncertainty U affects parameter
fluctuations.

In the following we derive an analytical prediction of the sta-
ble state of the described system.

Fluctuations in one dimension

For didactic reasons, we first consider fluctuations on one
dimension, X ∈ R. We rewrite Equation 20 as

Xk+1 = Xk + γU(Xk)Rk, (21)

where Rk is a random process with zero mean. Receptive
field size X is constrained to some range ΩX0 : [xmin xmax],
where xmin and xmax are reflecting boundaries (Gardiner,
1996). For sufficiently small γ, the fluctuations are approxi-
mated by a continuous-time stochastic model:

dX = U(X)dW,
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where dW is an increment of a Wiener process W(t)
(Gardiner, 1996). By this process, X gets distributed accord-
ing to the probability density function p(X, t), a solution of
this Fokker-Plank equation:

∂p
∂t

=
1
2
∂2

∂X2 U2(X)p(X, t),

subject to boundary conditions. The stationary solution of
this equation is

ps(X) = lim
t→∞

p(X, t) =
C

U2(X)
, (22)

where C is such that∫ xmax

xmin

ps(X)dX = 1 (23)

(Gardiner, 1996, p. 124). The maximum of this solution is
obtained at the same X as the minimum of U(X).

Fluctuations in two dimensions

Let receptive field parameters T and S vary according to
Equation 20. Let the random process be constrained to re-
gions ΩX0 in receptive field parameter space (T, S ) (Equa-
tion 12), and let these regions have elliptical shapes whose
centers are X0 and whose main diagonals are aligned with
the locally expected speed of stimulation (Equation 24):

v̄(X) =

∫ ∞
0 ω(v,X) p(v) v dv∫ ∞
0 ω(v,X) p(v) dv

. (24)

Speed v̄(X) represents an estimate of the expected stimulus
speed. Sensor speed preference, ω(v,X), is biased by proba-
bility p(v). The elliptic regions are then defined as:

ΩX0 = {X ∈ R2| (X − X0)T A(X − X0) ≤ 1},

A = M
(

1/a2 0
0 1/b2

)
M−1,

M =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, θ = tan−1(v̄(X)),

(25)

where a, b, a2 > b2 are the parameters of size and eccen-
tricity of ΩX0 . (On this definition, domains ΩX0 change their
orientations as the stimulation changes.)

For small γ and X = [X1, X2], the random process is ap-
proximated by a continuous-time stochastic model:

dX1 = U(X)dW1

dX2 = U(X)dW2,

where dW1 and dW2 are increments of Wiener processes
W1(t) and W2(t). Now the Fokker-Plank equation is

∂p
∂t

=
1
2

 ∂2

∂X2
1

+
∂2

∂X2
2

 U2(X)p(X, t).

The stationary solution of this equation with reflecting
boundary is unique. It is:

ps(X) =
C

U2(X)
, (26)

where C is such that∫
ΩX0

C
U2(X)

dX = 1.

To see that, substitute U(X)ps(X) by z(X). Function z(X)
must satisfy  ∂2

∂X2
1

+
∂2

∂X2
2

 z(X) = 0,

∂z
∂X1

n1(X) +
∂z
∂X2

n2(X) = 0,

where vector [n1(X), n2(X)] is normal to the fluctuation
boundary ∂ΩX0 . The second equation just above is a conse-
quence of the reflecting boundary condition (Gardiner, 1996,
p. 146, section ). From the Ostrogradsky-Gauss theorem it
follows that the only general solution of the latter equations
is z(X) = C (e.g., p. 99, b–c in Duff, 1956), where C is a
constant uniquely determined by Equation 26.1

1 Suppose that b is a differentiable function in R2, n is a unit
normal to boundary ∂Ω of Ω, and

∇ · b =
∂

∂X1
b(X1, X2) +

∂

∂X2
b(X1, X2).

According to the Ostrogradsky-Gauss theorem, the following iden-
tity must hold:∫

Ω

∇ · b dΩ =

∫
Ω

div(b)dΩ =

∫
∂Ω

b · n d∂Ω. (27)

Let z and v be any two functions each differentiable at least twice,
and let ∆ = ∂2

∂X2
1

+ ∂2

∂X2
2
. Then

v∆z + ∇z · ∇v = ∇ · (v∇z). (28)

From Equations 28 and 27 it follows that∫
Ω

v[∆z]dΩ +

∫
Ω

∇v · ∇zdΩ︸           ︷︷           ︸
E(z,v)

=

∫
Ω

∇ · (v∇z)d∂Ω =

∫
∂Ω

v∇z · n d∂Ω.

Taking into account the reflecting boundary condition, ∇z · n = 0,
and noticing that if z is a stationary solution then ∆z = 0, we con-
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Boundary conditions

We derived the steady states of the stochastic processes by
assuming a reflecting boundary condition. For consistency,
we made the same assumption in the simulations of recep-
tive field fluctuation. The “reflective boundary" implements
a conservative trend of receptive field fluctuation. When a
stochastic update brought receptive field parameters outside
of the boundary: X2 = X1 + ∆X, where X2 < ΩX0 , new pa-
rameters X̃2 were computed, as if the trajectory of receptive
field change was reflected from the boundary ΩX0 at point
X+. This point was the intersection of line X1X2 and the
boundary, such that

X̃2 = X2 − 2n((X2 − X+) · n) (29)

where n is the normal to the boundary at X+.
The choice of reflective boundary allowed us to sim-

plify the analysis (Appendix C). Discrepancies between pre-
dictions of the analysis and results of simulations were
most pronounced where the probability of “overstepping"
the boundary was significant, i.e., at high fluctuation rates γ
(Equation 20). For small γ, the effects of boundary condition
on steady-state distribution of receptive field parameters was
negligible.

The effect of fluctuation rate γ on convergence of recep-
tive field parameters is illustrated in Fig. 11, in one dimen-
sion. The analytic prediction of steady state and results of

−1 −0.5 0 0.5 1
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 p
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Figure 11. Steady-state parameter distributions. The red line is
a prediction of receptive field parameter distribution (Equation 22)
in a system with receptive field fluctuations constrained by a reflec-
tive boundary. X stands for receptive field size, here normalized
to interval [-1 1]. The uncertainty function U(X) is represented
by the green curve. The four black curves are results of compu-
tational experiments with different fluctuation rates γ. The curves
are histograms of parameter distributions, p(X), each after 1, 000
iterations.

computational experiments are shown for a system with a
simplified uncertainty function, U(X) = X2 + 0.1, using the
update rule of Equation 21. The prediction is represented by
the red line, computed as in Equation 22. (Here, the condi-
tion of Equation 23 is satisfied for C ≈ 8.) Results of compu-
tational experiments are represented by the black curves, for
four values of γ, having all the cells initialized to the same
X(t = 0) = 0.0 in every case. Results of experiments agree
with the analytic prediction when γ is small.

Appendix C
Optimal conditions

Derivation of pathlines

Changes of receptive fields with collinear local tendencies
form a “pathline.” The shapes of pathlines can be derived
as follows. First suppose, for simplicity, that the regions of
fluctuation ΩX0 are very narrow, so they can be approximated
by line segments centered on X0 and aligned with v̄i(X0). Let
the segments be spaced such that endpoints of one segment
are exactly at the endpoints of the neighboring segments. Let
L(X) be the union of segments ΩX0 forming a continuous
curve through X.

Then, pathline P(X) through X is a set of points contain-
ing all L(X) as subsets. If X is fixed, the slope of pathline
P(X) at point X is v̄i(X). When the segments are sufficiently
short, it follows from the Peano existence theorem and from
the theorem on continuous dependence of solutions on initial
conditions and parameters (Petrovski, 1966), that the curve
through X will be approximated by solution of this differen-
tial equation:

dX2

dX1
= v̄i(X). (30)

Generally, solutions of Equation 30 are not unique. They
become unique, however, when function v̄i(X) is Lipschitz at
X2 in some domainD such that

|v̄i(X) − v̄i(X′)| ≤ L|X2 − X′2|,

where X′ = (X1, X′2) (Osgood’s theorem; Petrovski, 1966).

clude that
E(z, z) =

∫
Ω

‖∇z‖2dΩ = 0.

Thus, given that function z is differentiable at least twice and that
domain Ω is bounded, we conclude that ∇z = 0 in Ω. Hence z must
be a constant.
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For example, if v̄i(X) is the expected speed of stimulation

ve =

∫ ∞

0
vp(v)dv,

then pathlines P(X0) at X0 = (X1,0, X2,0) are

X2 = veX1 + C0, (31)

for C0 = X2,0 − veX1,0.
Now suppose that regions ΩX0 are not confined to seg-

ments, but they constitute extended regions in (T, S ). Then
solutions of Equation 31 change from curves to bands cen-
tered on the curves. An example of such a band is illustrated
using red markers in Fig. 8A, which corresponds to the red
curve in Fig. 8B.

Minima of uncertainty on
pathlines

On every pathline there exists a point where composite mea-
surement uncertainty:

Uc(T, S ) = λS S +
λS̄

S
+ λT T +

λT̄

T

(Equation 9 in the main text) is the smallest, i.e., where the
following identity holds:

∂Uc

∂S
dS +

∂Uc

∂T
dT = 0. (32)

After sufficiently long time (i.e., in the system’s steady state),
the stochastic fluctuations of tuning parameters are expected
to preferentially bring cell tuning to such regions of (T, S )
where Equation 32 is satisfied. We find such conditions by

solving Equation 32 under the “pathline" constraint of Equa-
tion 31, which we rewrite as

S = veT + C,

where ve is the expected speed of stimulation and C =

S 0 − veT0 is a parameter approximately shared by a group
of cells. Within each such group, cell parameters vary as if
cell representations in space (T, S ) moved along a pathline
(or within a band of pathlines, the band defined by a small
range of C). Evidently, the most likely values of S and T
within such a group are

(T, S ) = arg min
T1,S 1: S 1=veT1+C

Uc(T1, S 1),

because the likelihood that a cell has some tuning (T ∗, S ∗)
is inversely proportional to Uc(T ∗, S ∗). Since uncertainty
function Uc is unimodal (λS , λS̄ , λT , λT̄ > 0), on any line
S = veT + C there is a minimum which we find by taking
into account that ve = dS/dT :

∂Uc

∂S
ve +

∂Uc

∂T
= 0. (33)

Solving Equation 33 for S and T yields

S =

√
veλS̄ T 2

(λS ve + λT )T 2 − λT̄
. (34)

Equation 34 describes a set of conditions in (T, S ) that has a
hyperbolic shape in both linear and logarithmic coordinates.
Equation 34 is identical to the equation that describes the op-
timal conditions of motion measurement in Gepshtein et al.
(2007).


