
Unsupervised adaptive optimization of
motion-sensitive systems guided by

measurement uncertainty
# Peter Jurica1, Sergei Gepshtein2, Ivan Tyukin2,3, Danil Prokhorov4, Cees van Leeuwen5

1 Lab. for Perceptual Dynamics, RIKEN Brain Science Institute
2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan, pjurica@brain.riken.jp

2 Lab. for Perceptual Dynamics, RIKEN Brain Science Institute, sergei.gepshtein@gmail.com
3 Dept. of Mathematics, University of Leicester

University Road, Leicester, LE1 7RH, UK, I.Tyukin@le.ac.uk
4 Toyota Technical Center, Ann Arbor 48105, USA, dvprokhorov@gmail.com

5 Lab. for Perceptual Dynamics, RIKEN Brain Science Institute, ceesvl@brain.riken.jp

Abstract

We propose a design for adaptive optimization of sensory
systems. We consider a network of sensors that measure
stimulus parameters as well as the uncertainties associated
with these measurements. No prior assumptions about the
stimulation and measurement uncertainties are built into the
system, and properties of stimulation are allowed to vary with
time. We present two approaches: one is based on estimation
of the local gradient of uncertainty, and the other on random
adjustment of cell tuning. Either approach steers the network
towards its optimal state.

1. INTRODUCTION

Intelligent systems, artificial or biological, can greatly benefit
from the ability to estimate parameters of time-varying optical
information. In manipulator robotics, for instance, this ability
can help controlling the actuators. In automotive applications,
optical information can be used to estimate the speed of
moving objects and thus improve traffic control. Measurement
of optical information, however, presents a number of difficul-
ties. In particular, the quality of measurements is marred by
intrinsic measurement uncertainty [2] that depends on both the
properties of sensors and the properties of stimulation.

Performance of sensory systems in face of the measurement
uncertainty also depends on their ability to effectively use
limited computational resources, whether the “resources” is
a pool of processing units that receives signals from light-
sensitive elements in a CCD camera of a given resolution, or
a pool of motion-sensitive cells in a biological neural network.
A systematic approach to how limited resources ought to
be used for effective measurement of time-varying optical
information was recently proposed in [4], where speed estima-
tion in biological vision was studied using a new normative-
economic framework. The authors showed that the normative
prescriptions were consistent with experimental evidence in
human vision [3] [5].

The normative-economic framework in [4] was used to
investigate how a pool of motion-sensitive cells should be
allocated in an environment whose statistics was known and
stationary. Yet the real systems may have no such a priori
information. Also, such systems would benefit from reallocat-
ing resources as the environmental statistics changes. In either
case, the systems should be able to discover properties of the
environment autonomously. We presently address this issue
by asking how a visual system can tune itself to properties of
time-varying environments for efficient motion measurement.

We propose a simple algorithm for unsupervised optimal
self-tuning of elements in a motion-sensitive system that faces
a time-varying environment. The proposed tuning mechanism
is local and probabilistic in nature. We demonstrate that it
steers the system toward the optimal configurations derived
analytically in [4].

In the following, we first summarize an analytic solution
to the problem of optimal resource allocation for motion
measurement (Section 2). Then we introduce our approach
to adaptive optimization and describe how we implement
it (Section 3). We conclude by illustrating results of our
computational experiments (Section 4).

2. PRELIMINARIES

It is convenient to describe the analytic results [4] and re-
sults of present computational experiments using a graphical
convention called the Distance Plot (Fig. 1). Each point in
the plot represents the tuning parameters of a standard motion
sensor [1], [7], [8]. The two parameters can be thought of as
the temporal span and delay of the motion sensors, or as the
spatial and temporal wavelengths of the signals that stimulate
the sensors optimally.

We consider a system that consists of N such sensors, each
tuned to a combination of spatial and temporal parameters,
S and T in Fig. 1. Every such sensor is thus also tuned to
speed, v = S/T (or v = dS/DT ), which is the fundamental
dimension of biological motion estimation [5], [6]. According
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Fig. 1: Optimal sets for speed estimation in space-time Distance Plot. The
oblique lines (speed lines) correspond to different speeds; these lines are
parallel to each other in the logarithmic coordinates. The three curves indicate
sets of optimal conditions for speed estimation. The black curve represents
conditions ideal for measuring every speed (local optimal set); it can be
achieved only in a system with infinite resources. The grey hyperbola is
the integral optimal set in an excessively frugal system whose sensors are
stimulated by a a very broad band of speeds, and which should tune to the
most likely speed — expected speed ve - of the environment. The red line is a
compromise (weighed optimal set) between the two extremes: a compromise
between precision and frugality. The compromise is optimal when it is based
on the statistics of stimulation.

to [4], the “measurement uncertainty” of a sensor is:

U(S, T ) =
λ1

S
+

λ2

T
+ λ3S + λ4T, (1)

where λi > 0 are positive constants. This uncertainty function
is derived in [4] from the uncertainty principle of measurement
[2].

The analysis in [4] showed that there exists an optimal con-
dition for estimation of every speed. A set of such conditions
across speeds (“optimal set”) has a shape that depends on the
properties and the number of sensors. In a realistic motion-
sensitive system, the optimal set must lie between the optimal
sets of two theoretical extremes:

• a system with unrealistically large amount of resources,
which affords infinitely high precision of speed estima-
tion, and which can afford what we call below local
optimization.

• a system with unrealistically scarce resources, which
affords only very low precision for estimating most
speeds, and whose optimization is described below as
total integration.

The theory in [4] finds an optimal compromise between the
two extremes (Fig. 1).

A. Local optimization

A system that has infinite resources could dedicate a sensor
for every speed and tune the sensor to that speed with
infinite precision. In such a system the optimal condition for
estimating a speed is a point on the corresponding speed line
where the measurement uncertainty of Eq. 1 is minimal. We
represent the optimal set for such as system by the black curve
in Fig. 1.

This model is called “local” because it is derived for a sys-
tem that can afford optimization for every speed independent
of other speeds. The local optimal set is an idealization, to
which any system seeking precise speed estimation ought to
aspire, but which most systems (including biological vision)
cannot reach for most speeds, for reasons we outline next.

B. Integral optimization

In real motion-sensitive systems the number of sensors and
computing elements is limited, which implies that sensitivity
of every sensor must span an interval of speeds. In other
words, speed-selective sensors in real systems make their
measurements by integrating contributions of multiple speeds
(which is why this framework is called integral).

1) Optimization by total integration: At the extreme,
consider sensors whose sensitivity spans all the measurable
speeds. The optimal strategy for this system is to tune its
sensors (perhaps a single sensor, at the extreme) to the most
likely speed - mathematical expectation of speed ve:

ve =
∫ ∞

0

p(v) v dv, (2)

where p(v) is the distribution of speeds in the stimulation.
Whereas the optimal set by local optimization can have differ-
ent shapes, depending on the parameters λi of the uncertainty
function in Eq. 1, the shape of the integral optimal set is
universally a hyperbola [4]. In Fig. 1, the optimal set found
by integrating contributions of all the speeds is plotted as the
thick grey curve.
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Fig. 2: Equivalent conditions for motion estimation. A. Human isosensitivity
contours [5]. B. Theoretical equivalence sets for optimal motion estimation
derived in [4] reproduce the “bent loaf of bread” shape of human isosensitivity
contours in A.
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Fig. 3: Illustration of the basic mechanism of adaptive opti-
mization in one dimension. The curve is uncertainty function
U(x) — where x represents a spatial or temporal parameter —
is similar to the one defined in Eq. 5. The shape of U(x) is
derived in [4] from the uncertainty principle of measurement
[2]: The high values of U(x) at low x represent the high
error rates in localizing stimuli in spatial or temporal frequency
domain, and the high values of U(x) at high x represent the
high error rates in localizing stimuli in space or time.

Each horizontal arrow represents a change of tuning of an in-
dividual element of the network for one iteration of simulation.
The arrows are scaled linearly with the uncertainty. The inset
is an enlargement of the area marked by the dotted rectangle
in the main panel. The figure shows eight iterations: From the
initial value, x0, the parameter changes the same number of
times in the two directions on x, which brings the cell closer
to the minimum of U(x).

2) Weighted optimization: The conditions of realistic speed
estimation must lie between the local optimal set and the
optimal set by total integration. As proposed by [4], the
compromise between the extremes for every speeds should
depend on how important the speed is for the system. Thus,
the degree to which the realistic optimal set approaches the
ideal optimal set (i.e., the optimal set by local optimization)
depends on the propensity of that speed in the stimulation: The
more likely a speed is in the environment the closer its optimal
point approaches the ideal point predicted by the local model.
Because of the aforementioned integration across speeds by
realistic sensors, the degree to which a realistic optimal point
approaches the ideal point also depends on how narrowly the
receptive fields are tuned to that speed.

The latter model is called “weighted optimization” because
it was derived in [4] by weighting the contributions of the local
and the total-integration models into the optimization process
for every speed. The resulting optimal set is shown in Fig. 1
as a red curve. The curve approaches the optimal set by local
optimization more at low than high speeds because low speeds
prevail in the natural stimulation.

C. Optimal distribution of sensors

In Fig. 2B we plot predictions of [4] for the optimal allocation
of sensors with different tuning properties across the entire
space of parameters. The predicted distribution is similar to the
human distribution of sensitivity as measured by [5] (Fig. 2A):
it has the characteristic “bent loaf of bread” shape with the
maximal sensitivity set having a hyperbolic shape. As the
normative theory [4] suggests, this shape is close to hyperbolic
because motion sensors integrate stimulation across speeds
(Section 2-B and Fig. 1) and because the visual system seeks
to optimize the precision of speed estimation.

The distribution of sensitivity shown in Fig. 2B is an
emergent invariant of an optimal motion-sensitive system.

Each element in the system responds to stimuli locally. In the
following we show that a sensory system made of elements
that estimate only local stimulation can evolve toward an
optimal state similar to the one shown in Fig. 2B.

3. ADAPTIVE OPTIMIZATION STEERED BY

MEASUREMENT UNCERTAINTY

In this section we describe general properties of the algorithm
of adaptive optimization.

A. Rationale

Consider a network of sensors each of which can localize
stimulus M(S, T ) in space-time and in the spatiotemporal
frequency domain, and also estimate the errors associated with
the estimates.

Localization. Localizing M in space-time amounts to measur-
ing the mean values of stimulation by every sensor:

S̄(T,M) =
1
S0

∫ S0

0

M(S, T )dS,

T̄ (S,M) =
1
T0

∫ T0

0

M(S, T )dT.

(3)

where S0 and T0 are the spatial and temporal extents of the
sensor’s receptive field and S̄(T,M) and T̄ (S,M) are the
estimates of spatial and temporal parameters of stimulation,
respectively. In general, the values of S̄(T,M) and T̄ (S,M)
are functions of S and T . Here, we assume quasi-stationarity
of stimulation, i.e., we assume that the spatial and temporal
properties of stimulation do not change significantly during
the measurement.

Uncertainty estimation. We assume that the system can also
estimate variances S̄1(T ) and T̄ 1(S) associated with estima-
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Fig. 4: Illustration of evolution by gradient of implicit
uncertainties in the local optimization framework. The three
panels represent the states of the network before the simula-
tion begun (t=0) and after iterations 10 and 400. The color
represents the “sensitivity” (Eq. 8): the warmer the color
the higher the sensitivity. (We normalized sensitivity within
every map.) As the network evolved, the region of highest
sensitivity was gradually aligned with the analytic prediction
of local optimization, represented by the black curve.

In this illustration, as in the other illustrations (Figs. 5–7),
the simulations started from the sensors distributed across
60 speed lines according to a uniform random distribution,
with 60 sensors allocated to uniformly random positions on
every speed line (3600 sensors in total).

tion of the mean values of stimulation:

S̄1(T ) =
1
S0

∫ S0

0

(M(S, T ) − S̄)2dS,

T̄ 1(S) =
1
T0

∫ T0

0

(M(S, T ) − T̄ )2dT.

(4)

For the quasi-stationary stimulation, the variance functions
S̄1(T,M) and T̄ 1(S,M) are independent on S and T .

Frequency domain. Similarly, the cells are assumed to estimate
mean spatial and temporal frequencies in the stimulation
f̄S(M), f̄T (M) and the corresponding variances f̄1

S(M),
f̄1

T (M).

Thus, the estimates of composite uncertainty ui of the i-
th sensor is assumed to depend on the values of S̄1(M),
T̄ 1(M), f̄1

S(M), f̄1
T (M). According to [2], in a system that

uses optimal sensors, measurements errors by i-th sensor are
defined as

ui(M) =λ1f̄
1
S(M) + λ2f̄

1
T (M)

+ λ3S̄
1(M) + λ4T̄

1(M)
(5)

which is similar to the explicit uncertainty function in Eq. 1.
Note that the explicit uncertainty in Eq. 1 is derived for
the complete set of stimuli (spanning the entire space of
parameters), whereas Eq. 5 applies to a single stimulus M
at a time. Hence, Eq. 5 can serve as an implicit estimate
of measurement uncertainty for current stimulation M in
evolutionary simulations.

Next we describe the algorithms we used to explore how
a network of sensors, each estimating the implicit uncertainty
associated with its measurements (Eq. 5), can optimize itself
in face of on-going stimulation.

B. Implementation

Initialization. Each sensor was assigned an initial parameter
value, i.e., a location (S, T ) in the space-time Distance
Plot. We investigated different deployments of neurons across
the space of parameters and found that, provided sufficient
evolution time, the initial deployment did not affect the results
of evolution.

Iterative evolution. We implemented two approaches to evo-
lution of sensitivity in our networks. In both approaches, cells
were allowed to change their locations on the corresponding
speed lines, based on the estimates of measurements uncer-
tainty at cell current locations. Measurement uncertainties
were computed as in Eq. 5.

1) Gradient approach: This approach was an application
of the standard gradient descent algorithm. Parameters of
every cell were adjusted according to the local gradient of
measurement uncertainty. We assumed that every i-th cell had
a preferred velocity vi: the ratio of cell’s preferred temporal
and spatial parameters, Si and Ti. Although the preferred
Ti and Si were allowed to vary from one measurement to
another, we assumed that cell tuning to speed did not change
significantly over a large number of measurements. In other
words, cell tuning was allowed to drift along its preferred
speed line. In the framework of optimization by gradient
descent, these assumptions imply that the values of Ti and
Si were updated according to the following rule:

ΔTi = −γ cos
(
(Ti, viTi), (∂uT (i), ∂uS(i))

)
ΔSi = −viΔTi, γ > 0,

(6)

where γ is a positive constant, and ∂uT (i) = ∂ui(Si, Ti)/∂Ti

and ∂uS(i) = ∂ui(Si, Ti)/∂Si are the spatial and temporal
partial derivatives of measurement uncertainty at the tuning
parameters of the cell. Term cos(·) in Eq. 6 represents the
difference between two orientations: orientation of the local
gradient of uncertainty

(∂uT (i), ∂uS(i))

and orientation of the speed line

(Ti, viTi)

for the speed that dominates optimization of i-th cell. Parame-
ter γ controls susceptibility of cell tuning to change and thus it
determines how quickly the network settles into a stable state
for given conditions of stimulation.

2) Random search approach: We illustrate this approach
schematically in Fig. 3, on a single dimension. In the actual
simulations at every step and for every cell, a direction on the
speed line was chosen randomly from a uniform distribution.
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The step for each cell was then scaled by the amount of
uncertainty measured at that location:

ΔTi = γRui(Si, Ti)
ΔSi = viΔTi,

(7)

where R ∈ {−1, 1} represents the (random) direction on the
speed line and γ is defined as in Eq. 6.

We assumed that the tuning functions of individual cells
were bivariate Gaussian functions, whose means were cell’s
preferred parameters (Ti, Si), and whose temporal and spatial
sizes (dispersions) were, respectively, CT Ti and CSSi. Pos-
itive constants CT and CS were chosen so that the tuning
functions covered the entire space of parameters. We calcu-
lated an additive performance characteristic P of the system
as a whole as follows:

P(S, T ) =
N∑

i=1

e
− (S−Si)

2

(CSSi)
2 − (T−Ti)

2

(CT Ti)
2 . (8)

We called this characteristic “sensitivity” and plotted it across
the space of parameters (T, S) as a “map of sensitivity,” to
capture the dynamics of evolution in our networks.

4. RESULTS

Simulations by different optimization models yielded results
consistent with the analytic predictions in [4]. This result
demonstrated that local estimates of measurement uncertainty
are sufficient to steer sensory system toward globally optimal
states. We illustrate results of the computational experiments
in Figs. 4–7.

In Fig. 4 we plot results of evolution by a method that
approximated the local optimization model. Here we assumed
that each cell estimated uncertainties associated only with
measurements of a single speed: the speed preferred by the
cell (tuning speed). As we show in Fig. 4, after a sufficient
number of iterations, the region of highest sensitivity grew
aligned with the analytic prediction of local optimization: the
local optimal set, which is represented in Fig. 4 by a black
curve. This result did not depend on statistics of stimulation,
as long as the statistics allowed all the cells in the system to
be stimulated, to insure optimization for all the represented
speeds.

In Fig. 5 we plot results of evolution by a method that
approximated the total-integration model. Here sensors tuning
was very broad and the optimization process was governed by
a single speed: expected speed ve of stimulation (Eq. 2). In
agreement with the analytic prediction, now the region of high-
est sensitivity evolved to resemble a hyperbola in the Distance
Plot. Contrary to the simulations of local optimization, results
of present simulations did depend on statistics of stimulation.
It is because now every cell was stimulated by every stimulus,
so that the average estimated speed by every cell was the
expected speed ve.

In Fig. 6 we illustrate results of evolution by a method
that approximated the weighted model, which is a case of
integral optimization. Here, the receptive field of every cell
was stimulated by a limited range of speeds, as opposed to

the entire range of speeds in the total-integration model. Sizes
of the receptive fields across speeds were set to grow linearly
as a function of speed (in agreement with the principle of
uncertainty [4]), i.e., the range of integration across speeds
was wider for cells tuned to high speeds than for cells tuned to
low speeds. As a result, optimization of i-th cell was governed
by the mean speed over its range of integration, Ωv(i):

ve(i) =
∫

Ωv(i)

p(v) v dv.

Now measurement uncertainty steered cells such that the
region of highest sensitivity occupied an intermediate position
between the optimal set by the local-optimization model and
the optimal set by the total-integration model.

In Fig. 7 we illustrate an approximation of local optimiza-
tion using the method of random search (explained for one
dimension in Fig. 3). As in the gradient descent simulation,
this optimization steered the cells toward the predicted optimal
set. Notice, however, that now the region of highest sensitivity
was not concentrated around the optimal set as tightly as in
the gradient descent simulation. The reason for this difference
is that in the gradient descent simulations the cells stopped
changing their tuning parameters when the conditions of
optimization were met; for example, when they reached the
minimum of the measurement uncertainty function in the local
optimization framework. In contrast, tuning parameters of cells
in the random-search simulations never ceased to change:
the search algorithm brought the cells toward the optimal
conditions, but it forced the cells to wander in the vicinity
of these conditions, which is why the distribution of cells in
the optimized network in Fig. 7 is wider than in Figs. 4–6.
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Fig. 5: Illustration of evolution by gradient
of implicit uncertainties in optimization by total
integration. The graphic conventions are as in
Fig. 4. The grey hyperbola represents the analytic
optimal set by the total-integration model. We
simulated optimization by total integration by
making optimization of every cell depend on the
mean speed of stimulation ve (Eq. 2). As the
network evolved, the region of highest sensitivity
was gradually aligned with the analytic prediction
of optimization by total integration.
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1 Fig. 6: Illustration of evolution by gradient of im-
plicit uncertainties in the weighted optimization
framework. Now every sensor integrated contri-
butions of multiple speeds, such that optimization
depended on the mean speed of stimulation that
fell within the region of integration. On every
iteration, a sensor was presented with 100 stimuli
on the same speed line. The speeds were drawn
across the iterations from a normal distribution
with mean μ = 1.0 ◦/sec and standard devi-
ation σ = 4.47 ◦/sec. Only those cells were
updated whose receptive fields were stimulated
on a given iteration. As is evident in the figure,
the region of highest sensitivity was gradually
aligned with a set that was intermediate between
the one predicted by local optimization and the
one predicted by total integration, as expected
from the normative considerations (Fig. 1).
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Fig. 7: Illustration of evolution by the random-
search algorithm driven by implicit uncertainties
in the local optimization framework. This evolu-
tion proceeds slower than evolution by gradient
descent, which is why we show the states of the
system separated by a greater number of iterations
than in the previous figures. In the optimized net-
work, high sensitivity tends to concentrate along
the local optimal set, as in Fig 4, but the random
search algorithm forces the cells to continuously
change their tuning parameters, which is why the
distribution of sensitivity in a network optimized
by random search is more dispersed than in a
network optimized by gradient descent.
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