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EEG Gamma Band Oscillations Differentiate the
Planning of Spatially Directed Movements of the
Arm Versus Eye: Multivariate Empirical Mode

Decomposition Analysis
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Todd P. Coleman, and Howard Poizner

Abstract—The neural dynamics underlying the coordination
of spatially-directed limb and eye movements in humans is not
well understood. Part of the difficulty has been a lack of signal
processing tools suitable for the analysis of nonstationary elec-
troencephalographic (EEG) signals. Here, we use multivariate
empirical mode decomposition (MEMD), a data-driven approach
that does not employ predefined basis functions. High-density
EEG, and arm and eye movements were synchronously recorded
in 10 subjects performing time-constrained reaching and/or eye
movements. Subjects were allowed to move both the hand and
the eyes, only the hand, or only the eyes following a 500–700 ms
delay interval where the hand and gaze remained on a central
fixation cross. An additional condition involved a nonspatially-di-
rected “lift” movement of the hand. The neural activity during a
500 ms delay interval was decomposed into intrinsic mode func-
tions (IMFs) using MEMD. Classification analysis revealed that
gamma band (30 Hz ) IMFs produced more classifiable features
differentiating the EEG according to the different upcoming
movements. A benchmark test using conventional algorithms
demonstrated that MEMD was the best algorithm for extracting
oscillatory bands from EEG, yielding the best classification of the
different movement conditions. The gamma rhythm decomposed
using MEMD showed a higher correlation with the eventual
movement accuracy than any other band rhythm and than any
other algorithm.
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I. INTRODUCTION

P LANNING the movements of the eyes and hands involves
transformations of spatial representations of arms, eyes,

and the target [1]. The planning of saccades and hand move-
ments is partially mediated by the bidirectional neural networks
linking the parietal and frontal areas of the cortex [2]. The
neural dynamics underlying such planning in humans is poorly
understood. The noninvasive electroencephalography (EEG)
and magnetoencephalography (MEG) have been increasingly
used to investigate the temporal dynamics of sensorimotor and
cognitive processes. For example, Perfetti et al. [3] recorded
EEG while healthy subjects learned a visuo-motor rotation
task, and found that gamma and theta activity were modulated
during movement planning and execution. Initial learning was
associated with increasing gamma power over the right parietal
cortices during execution of reaching movements, and with
gamma/theta phase coherence during movement planning.
Werf et al. [4], [5] used MEG to demonstrate neuronal synchro-
nization of gamma band activity in the human posterior parietal
cortex during both reaching movements and saccade planning.
Previous studies of neuronal oscillations in different fre-

quency bands during reaching movements have tended to
employ standard signal processing techniques based on Fourier
analysis and wavelet analysis [3]–[6]. These methods use pre-
defined sets of basis functions resulting in poor time-frequency
localization [7]. Thefixed linear basis functions that are effective
for stationarymodeling can be sub-optimal for the nonstationary
electrophysiological signals of the brain [8]–[10]. In such bi-
ological systems as the brain the frequencies of oscillations
are not fixed: EEG rhythms drift within different frequency
bands, making the conventional methods based on predefined
bases inadequate. In the present work, we take into account
the nonstationary and nonlinear neuronal oscillations by using
empirical mode decomposition (EMD) [7], which is a fully
data-driven time-frequency analysis algorithm. EMD makes no
prior assumptions about the data, which makes it highly suitable
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for the analysis of intracortical signals and EEG [9], [11]–[13].
For example, Park et al. demonstrated a better localization of
time-varying frequency components of and rhythms
during motor imagery using the EMD algorithm, crossing over
the fixed frequency bands, than such conventional methods as
short-time Fourier transform (STFT) and wavelet transform [8].
Furthermore, the analysis of multichannel EEG on a

channel-by-channel basis does not consider cross-channel
interdependence. Fourier and wavelet transforms decompose
the signal from each EEG channel separately by applying
fixed basis functions. The original EMD algorithm was also
designed for single-channel data decomposition without con-
sideration of cross-channel interdependence, posing a problem
of uniqueness: the phenomenon where the components for each
channel do not correspond in number and frequency [14]. Re-
cently developed multivariate empirical mode decomposition
(MEMD) can be used to circumvent the problem of uniqueness
and yield a more accurate estimation of the intrinsic modes in
multichannel signals when narrowband oscillations of interest
are shared by multiple channels [15].
This paper presents the analysis of EEG during the planning

of spatially (or nonspatially) directed reaching movements and
saccade movements using MEMD with a support vector ma-
chine (SVM)1 classification tool [18]. We discriminate time-fre-
quency components of single trials using MEMD as well as
Fourier and wavelet transforms in different tasks, and investi-
gate which method extracts features of cortical signals more ac-
curately to represent the different conditions.

II. METHODS

A. Empirical Mode Decomposition

Empirical mode decomposition (EMD) makes no prior as-
sumptions on the data which makes it suitable for the analysis
of nonlinear and nonstationary processes [7]. EMD is a fully
data-driven technique for decomposing the signal into ampli-
tude modulation (AM) and frequency modulation (FM) com-
ponents, known as intrinsic mode functions (IMF), which re-
flects the natural oscillations of the signal. A signal requires two
conditions to be considered an IMF: 1) the number of extrema
and the number of zero crossings differ at most by one, 2) the
mean of the envelopes connecting the local maxima and local
minima is approximately zero. The steps of EMD decomposi-
tion are outlined in Algorithm 1.

Algorithm 1. The standard EMD algorithm

0) Input signal, .
1) Let .
2) Identify all local maxima and minima of .
3) Find a lower “envelope,” that interpolates all
local minima.

1The SVM has been often used to differentiate neural oscillations for various
conditions. For example, Bathellier et al. showed that local cortical responses
predict discrimination performance of sounds in behaving mice using SVM [16]
and Wang et al. applied SVM to predict intended arm movement using EEG
[17].

Fig. 1. An example of EMD decomposition for an input signal.

4) Find an upper “envelope,” that interpolates all
local maxima.
5) Calculate the local mean, .
6) Subtract the local mean from

( is an order of IMF).
7) Let and go to step 2); repeat until
becomes an IMF.

The first IMF, , is subtracted from the original signal,
, resulting in a new signal . The same procedure is con-

ducted iteratively to until it contains no more oscillations.
This is known as a sifting process controlled by a stopping cri-
terion [19]. The original signal is then

(1)

where , are the IMFs and the remaining
residue. Fig. 1 illustrates an example of EMD decomposition for
an input signal. The narrowband nature of the IMFs satisfies the
conditions under which the Hilbert transform [7]

(2)

can be applied to obtain localized time-frequency components,
where symbol indicates the Cauchy principal value. The an-
alytic signal is then obtained as

(3)

and is described by its amplitude and phase functions, and
. The phase function, , is differentiated to produce the

instantaneous frequency, [20].
Due to the nonlinear and nonstationary nature of EEG sig-

nals and noise, the uniqueness problem of EMD decomposition
is critical to any analysis or fusion of multicomponent signals
obtained in a channel-by-channel basis, since the IMFs decom-
posed for different EEG channels can be different in number and
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frequency. This is reflected by the different decompositions pro-
duced for signals with similar statistics, and when similar fre-
quencies appear across different IMFs, a phenomenon known
as mode-mixing.
To address this problem, Rehman and Mandic [15] pro-

posed the multivariate EMD, a natural and generic extension
of the standard EMD. While standard EMD estimates the local
mean using the average of upper and lower envelopes, the
local mean of -dimensional signals are computed by the mul-
tiple -dimensional envelopes, which are generated by pro-
jecting the signal along different directions in -variate spaces.
For a uniform set of direction vectors to project the signal,
low discrepancy Hammersley sequences are used to obtain
quasi-uniform points on high dimensional spheres [21]. The
details of MEMD2 are outlined in Algorithm 2 [15]. The sifting
process of MEMD is stopped when all the projected signals
fulfill the stoppage criterion used in standard EMD.3

Algorithm 2. The multivariate EMD algorithm (MEMD)

1) Choose a suitable point set for sampling on an (n-1)
sphere.

2) Calculate a projection, denoted by , of the
input signal along the direction vector ,
for all (the whole set of direction vectors), giving

as the set of projections.
3) Find the time instants corresponding to the maxima
of the set of projected signals .

4) Interpolate to obtain multivariate envelope
curves .

5) For a set of K direction vectors, the mean
of the envelope curves is calculated as

.
6) Extract the “detail” using
( is an order of IMF). If the “detail” fulfills the
stoppage criterion for a multivariate IMF, apply the
above procedure to , otherwise apply it
to .

When MEMD is applied to multidimensional white
Gaussian noise (WGN), the MEMD algorithm acts as a
dyadic filter bank on each channel, exhibiting enhanced
alignment of the corresponding IMFs from different channels
across the same frequency range compared to EMD [23].
Taking advantage of this property of MEMD, a noise-assisted
MEMD (NA-MEMD) was introduced by Rehman and Mandic
[23] to alleviate the mode mixing problem. The NA-MEMD
processes the composite signal of multivariate data and
multivariate independent white noise. Therefore, the noise is
never mixed with the useful data channels, since it resides
in a different subspace and creates a filterbank structure to
the data. This alleviates the problem of mode mixing and

2The MATLAB code of MEMD is available from http://www.
commsp.ee.ic.ac.uk/~mandic/research/emd.htm.
3We employed a combination of EMD stoppage criteria, given in [19] and

[22], for MEMD sifting.

provides better definition of frequency bands inherent to the
data. A set of IMFs corresponding to the original input data
is kept by removing the IMF associated with the noise. Due
to the noise channel, the scale of IMFs obeys the dyadic
filter bank property, ensuring that IMFs associated with the
original input data are aligned and have the same information
at each level of decomposition. The details of the NA-MEMD
method are described in Algorithm 3.

Algorithm 3. Noise-Assisted MEMD (NA-MEMD)

1) Create an uncorrelated white Gaussian noise
time-series (q-channel) of the same length as that of
the input.

2) Add the noise channels (q-channel) created in Step 1
to the input multivariate (n-channel) signal, obtaining
an -channel signal.

3) Process the resulting -channel multivariate
signal using the MEMD algorithm listed in Algorithm
2, to obtain multivariate IMFs.

4) From the resulting -variate IMFs, discard the
q channels corresponding to the noise, giving a set of
n-channel IMFs corresponding to the original signal.

B. Subjects

Ten right-handed healthy subjects (age : yrs, four
men and six women) participated in the study. The study was
approved by the Human Subjects Institutional Review Board
of the University of California, San Diego. Written informed
consent was obtained from all the subjects.

C. EEG Recordings

Scalp electroencephalographic activity was sampled contin-
uously at 512 Hz using a 70-channel active electrode array, of
which 64 channels were mounted in an elastic cap according
to the extended International 10–20 system, with a DRL/CMS
reference (Biosemi Inc., Amsterdam, The Netherlands). Four
electrodes were mounted on the supra- and infraorbital ridges
of the right eye as well as lateral to the outer canthi of the right
and left eyes to measure eye movements, a technique known as
electrooculography (EOG). Two electrodes were also attached
to the right and left neck at the height of the seventh cervical
vertebra to monitor activity of the neck muscles, particularly the
trapezius. Electrode locations were digitized in 3-D space with
a Fastrak system (Polhemus Inc., Colchester, VT, USA) in com-
bination with the Locator software suite (SourceSignalImaging,
San Diego, CA, USA).

D. Eye Movement Recordings

Throughout the experiment, the observer’s right eye-position
was recorded at 1000 Hz using the Eyelink-1000 Tower Mount
(SR Research, Osgoode, ON, Canada), a noninvasive infrared
video-oculographic system with a gaze resolution of
and a gaze position accuracy of . The manufacturer’s soft-
ware was used for calibration, validation, and drift-correction.
The eye–screen distance was 400 mm. Events and TTL time
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Fig. 2. Experiment setup and targets on the screen. While subjects conducted
spatially directed movements (both hand and eyes “HS,” only their hand “HO”
or only their eyes “SO”) and nonspatially directed movement (hand lift “HL”)
following a 500–700 ms hold interval, the positions of hand and eyes, and EEG
were synchronously recorded. (a) Experiment setup. (b) Targets on the screen.

pulses sent from the stimulation computer were recorded and
saved in conjunction with the eye position data.

E. Hand and Arm Motion Capture

Three-dimensional movement kinematics of the right hand
and arm were recorded at 120 Hz or 240 Hz via 10 infrared
LED sensors (PhaseSpace, Inc., San Leandro, CA, USA) se-
curely attached to the stylus (three sensors) and back of the hand
(4 sensors), as well as wrist, elbow, and shoulder (one sensor
each) of the participant. The middle stylus sensor was used for
reconstructing finger position as well as hand onset and offset
latencies. Data was recorded continuously together with a TTL
master time stamp sent from the stimulation computer (see [24]
for more details).

F. Experimental Paradigm

Subjects sat in front of a 32 in touch screen at an angle of 85
with respect to the horizontal axis (AccuTouch, Elo TouchSys-
tems, Menlo Park, CA, USA) and were requested to perform
time-constrained reaching and/or eye movements from the
center of the touch-screen to a lateral target (see Fig. 2). Viewing
distance was held constant at 400 mm with a chin rest. We used
a simplified task introduced by [25]–[27]. Over the course of the
experiment, we varied the movement modality and the amount
of eye–hand coordination: Subjects either had to touch the
target while being allowed to freely move their eyes (condition
“hand saccade,” HS), touch the target while maintaining fixa-
tion at the center (condition “hand only,” HO), saccade towards

Fig. 3. Signal processing block diagram to produce the classification results
using the noise-assisted MEMD, IIR filter, and wavelet (Morlet). LPF and HPF
denote low-pass filter and high-pass filter, respectively.

the target while holding their hand at the center (condition “sac-
cade only,” SO), or to simply lift their hand from the screen and
bring it back to the former center location (condition “hand lift,”
HL). In all conditions, lateral target discs were presented. As de-
picted in Fig. 2, subjects initiated a trial by touching and looking
at the center fixation cross, which resulted in a center color
change from yellow to white. After a randomized time interval
ranging between 500 and 700 ms, a lateral target, colored green,
was presented in either the lower left or upper right area of the
screen.Subjectswere required tomaintain theirfixation andhand
at the center. This “hold” interval was active for a randomized
time interval of 500–700 ms. Whenever subjects moved their
hand and/or eyes prematurely, the center turned again yellow and
the trial was re-initiated with a newly randomized target. Upon
successful completion of the hold interval, the center disc disap-
peared, signaling the subject to perform the requestedmovement
within a timewindowwhichwas determined in a training session
of 100 “hand saccade” trials preceding the main experiment
(four subjects: 450 ms; six subjects: 500 ms). Hand or eye end-
points, i.e., the point where the stylus/gaze hit the touch screen,
were displayed as small white dot (radius of 10 pixels mm)
togetherwith an auditory cue for 200ms (differentiating between
target hits, misses, and time-outs). Hits, misses, and time-outs
(responsesexceeding the timeconstraint)yieldedmonetarygains
or losses. We analyzed the 500 ms interval of “motor planning”
following the “go” signal before the movement execution took
place in order to examine changes in the neural dynamics during
the four different conditions of movement planning. There were
about 100 trials to left and right targets for “HS,” “HO,” and “SO”
conditions and 50 trials for the “HL” condition.

G. Signal Processing for Classification

Fig. 3 illustrates the block diagram from preprocessing the
70 channel data to the calculation of classification results using
the three different frequency component estimation methods
[noise-assisted MEMD, infinite impulse response (IIR) filter,
and wavelet transform (Morlet)].
1) Preprocessing: In order to removemotion artifact and am-

bient noise, a preprocessing procedure was performed on the
continuous data using EEGLAB software [28]. The continuous
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EEG signal was low-pass filtered below 55 Hz and high-pass
filtered over 1 Hz using an IIR filter, removing the power line
noise (60 Hz) and dc offset. Afterwards the continuous EEG
signal was epoched into segments of 1.4 s based on target onset
latencies (from to 1200 ms after the target onset). Bad
epochs were visually rejected by observing burst movements
or large contractions of head and neck muscles. After that, in-
dependent component analysis (ICA) [29] was applied to re-
move the stereotyped artifacts such as blinks, eye movements,
and motion [30]. For those artifact rejection, we used InfoMax
ICA [31], [32], which aims to minimize mutual information
between sources by maximizing entropy. Independent Compo-
nents (ICs) were analyzed with respect to scalp topography and
frequency characteristics, and those that displayed features in-
dicative of artifacts were removed. For example, muscle arti-
facts were identified by ICs having a spatially focal scalp projec-
tion and high power at high frequencies (20–50 Hz and above).
The ICs were derived from the full set of trials (i.e.,

), which is a standard procedure [33].
2) Frequency Component Estimation: The 64 channel EEG

data of the preprocessed 70 channel data was decomposed si-
multaneously using NA-MEMD with the aid of three additional
noise channels, where the ratio between the standard deviation
of the noise and data was 0.1 [8]. Based on the average power
spectra of each IMF across channels and subjects, IMFs related
to gamma, beta, alpha, and theta rhythms were defined. A com-
parative study was performed to show the ability of NA-MEMD
to produce more accurate frequency component estimates over
the IIR filter and wavelet transform. A sixth-order Butterworth
IIR filter was designed for the high-pass filter (30 Hz ), which
is commonly used for EEG analysis [34], [35]. The wavelet
transform4 (widely used Morlet wavelet [7]) were applied and
the scales were reconstructed to obtain the high-pass filtered
signals.
3) Common Spatial Patterns: Features relevant to motor

planningwereextractedusing thecommonspatial patterns (CSP)
algorithm, often used in BCI applications [36], [37]. It provides
spatial filters that maximize the variance of signals in one class
and simultaneously minimize the variance of signals in the other
class. In this way, CSP filters can classify between ERD/ERS
caused by changing brain dynamics, since their operation is sen-
sitive to subtle changes in the power of band-pass filtered data.
For a detailed description of theCSPalgorithm, seeAppendixA.
4) Classification: The feature vectors ,

obtained by (11) in Appendix A for ( defines the
number of spatial filters)5, were classified using a support vector
machine (SVM) [18] with a Gaussian kernel.6 The trial data for

4The wavelet transform is given by

(4)

where is the mother wavelet, the dilation factor, and the translation of
the origin.
5Two most important spatial filters were the optimal number of filters and the

use of more filters did not significantly improve classification accuracy [36].
6If complete model selection using the Gaussian kernel has been conducted,

there is no need to consider linear SVM [38]. The MATLAB code can be down-
loaded from [39].

each task was divided into 80% training and 20% testing sets,7

and the classification was repeated five times while changing
the sample order. The average of these outcomes was the final
classification rate (five-fold cross-validation). The 95% upper
limit of confidence interval between two classes was obtained
through bootstrapping with 2500 replications of random label
reshuffling.

H. Event-Related (De)Synchronization

In order to look into the power feature of frequency compo-
nents, we used event-related (de)synchronization (ERD/ERS)
[40], which is the relative changes in power relative to the base-
line power and is defined as

% (5)

where is the power within the frequency band of interest in
the period after the event, and is that of the preceding base-
line period. ERD/ERS was investigated within four frequency
bands: theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (30–55 Hz). IMFs within these frequency bands were
chosen by the average power spectra of the IMFs across all data.
The power of IMFs were estimated using the squared value of
instantaneous amplitude in (3), .

III. RESULTS

A. IMFs of EEG

Fig. 4 illustrates the first seven IMFs decomposed using
NA-MEMD corresponding to channels F3, F4, C3, C4, P3,
and P4. Note that the common oscillatory modes are aligned
at the same IMF level without mode mixing across IMFs.
has the highest frequency components while has the lowest
components. Spectral estimation of each IMF was calculated
using a periodogram (Bartlett window) [41]. Average power
spectra across all channels for all trials and all subjects are
illustrated in Fig. 5. Notice that gamma band rhythm can be
estimated from and , beta band rhythm from , alpha band
rhythm from , and theta band rhythm from . Fig. 5(b) is an
enlarged image of power spectrum for the sum of and . For
the comparison with wavelet and IIR filter, the average power
spectra of the gamma band signals produced using wavelet and
IIR filter are also illustrated in the same figure.

B. Event-Related Synchronization Using IMFs

Grand average of event-related synchronization (ERS)
topoplots [42] for all 10 subjects were calculated using the
IMFs corresponding to different motor tasks (Fig. 13). The
ERS topoplot shows power changes during the motor planning
period (0 to ms) relative to the average of the baseline
period ( to ms). Warmer colors indicate an increase
in power on the channel after the stimulus onset. The gamma
rhythm IMFs, (sum of and ), have more spatial
dynamic variation across tasks to both left and right targets as
compared to the other IMFs. For example, ERS of “HS” has
strong activity on temporal and posterior areas, while the ERS
of “HL” and ‘HO’ show power increase on the frontal channels.

7The CSP filter parameters were defined using only the training data set.
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Fig. 4. Decomposition of EEG signals from six channels using the noise-as-
sisted MEMD. Note that each IMF contains a single frequency mode. IMF con-
tains slower oscillation as the index of IMF is increased.

Other IMFs, including (sum of IMFs from to , which
contains frequency components from 1 to 55 Hz based on
Fig. 5), reflect significant changes in the posterior and occipital
regions. We studied the significance of the difference of spatial
power distribution across the four different motor preparation
conditions. The 64 channel ERS values were normalized, and
the difference of the values between pairs of tasks was tested
using a t-test. Fig. 14 illustrates the p-values for each channel,
for all pairwise combinations of motor tasks. The number of
significant channels (p-values less than 0.05) is reported under
each topoplot. Overall, the gamma rhythm ERS using
had more significantly different channels than the other IMFs
shown. This finding suggests that the spatial information in
multichannel EEG used for classification of the different motor
conditions derives mostly from the gamma rhythm IMFs.

C. Single Trial Classification Results

Instead of trial averaging (as in the ERS analysis), the IMFs
corresponding to the four motor tasks were classified using CSP
with SVM in order to investigate the spatial information of the
multichannel EEG in single trials. Tables I and II show the clas-
sification results of all combinations of four motor planning

Fig. 5. Average power spectra of – across channels and subjects. Each
IMF works as a filter bank, where and contain most of gamma band,
beta band, alpha band, theta band, and and delta band components.
Note the comparison of the gamma band power spectra using different algo-
rithms in (b). (a) Power spectra of – . (b) Power spectra of gamma band.

TABLE I
CLASSIFICATION RESULTS (IN %) PRODUCED USING , MOSTLY GAMMA
BAND COMPONENTS, BETWEEN TWO DIFFERENT CONDITIONS FOR “LOWER
LEFT” TARGET. “HS” DENOTES HAND WITH SACCADE, “HL” HAND LIFT,
“HO” HAND ONLY, “SO” SACCADE ONLY AND “2D ERR” 2-D ERROR DURING
HAND MOVEMENT WITH SACCADE. CLASSIFICATION RATES ABOVE 95%
CONFIDENCE INTERVAL DETERMINED BY A BOOTSTRAPPING METHOD ARE
INDICATED IN BOLD. NOTE THE SUBJECTS HAVING WORSE CLASSIFICATION
RATES PRODUCED HIGHER 2-D ERRORS, SUCH AS SUBJECT 1, 3, AND 9

tasks to left and right targets using . The classification rates
above 95% confidence interval determined by a bootstrapping
method are indicated in bold. As an index of behavioral perfor-
mance for each subject, average 2-D Err (Error) to the target was
recorded while subjects executed hand movement with saccade.
Overall, the subjects who had good performance with smaller
“2D Err” had higher classification rates, such as subjects 4, 5,
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TABLE II
CLASSIFICATION RESULTS (IN %) PRODUCED USING , MOSTLY GAMMA
BAND COMPONENTS, BETWEEN TWO DIFFERENT CONDITIONS FOR “UPPER
RIGHT” TARGET. “HS” DENOTES HAND WITH SACCADE, “HL” HAND LIFT,
“HO” HAND ONLY AND “SO” SACCADE ONLY. “HS” DENOTES HAND WITH
SACCADE, “HL” HAND LIFT, “HO” HAND ONLY, “SO” SACCADE ONLY
AND “2D ERR” 2-D ERROR DURING HAND MOVEMENT WITH SACCADE.

CLASSIFICATION RATES ABOVE 95% CONFIDENCE INTERVAL DETERMINED BY
A BOOTSTRAPPING METHOD ARE INDICATED IN BOLD. NOTE THE SUBJECTS
HAVING WORSE CLASSIFICATION RATES PRODUCED HIGHER 2-D ERRORS,

SUCH AS SUBJECT 3, 8, AND 9

and 7 to the left target in Table I and subjects 2, 4, and 7 to the
right target in Table II. The correlation analysis between classi-
fication rates and “2D Err” will be addressed below.
The classification results using the other IMFs were calcu-

lated and their averages across subjects are shown in Fig. 6
with standard errors (error bars). Overall, the average classifi-
cation rates using were the highest. The classification re-
sults using a sum of all the IMFs, (1–55 Hz), were largely
outperformed by . For rigor, the higher classification rate
using compared to the other IMFs was analyzed using the
one-tailed t-test, and the significant cases are denoted using stars
on the error bars of classification results. The different
colors of the stars illustrate the significant improvement of ,
p-values less than 0.05, compared to the different IMFs (i.e.,
green star to , red to , cyan to , and black to ). Overall,

produced higher classification rates than the others for the
six different scenarios, which infers that gamma rhythm
contains significantly larger amount of information to classify
the four motor tasks than the other frequency band IMFs. We
also used the receiver-operating characteristic (ROC) analysis
[43] to assess the classification performance of the IMFs, plot-
ting the sensitivity (true positive rate) of classification against
the false-positive rate. For example, when we discriminate be-
tween “HS” and “HL,” the sensitivity refers to the percentage
of trials which was classified as “HS” among all “HS,” and
the false-positive rate refers to the percentage of trials which
was classified as ‘HS’ among all “HL.” The area under the
ROC curve (AUROC) is a measure of how well the IMFs of
two motor tasks can be separated. If the sensitivity increases
steeply as the threshold for classifier increases, with a relatively
small increase of false-positive results, the AUROC will be-
come large. On the contrary, if the sensitivity grows slowly
as the classifier threshold increases, with a steep increase of
false-positive results, the AUROC will be small. The difference
of five AUROCs of , and were tested to
demonstrate that advantage of separation by is statistically
significant. Fig. 7 shows the ROC curves for the classification
performance of subject 7 using , and . Note
that the AUROCs of are larger than the other AUROCs.

Fig. 6. Classification results between two different conditions using IMFs.
Error bars illustrate the standard errors. Overall, classification rates using the
sum of and , gamma band components, are higher than those produced
using the other IMFs including the sum of all IMFs, (1–55 Hz). This
is confirmed by the one-tailed t-test and the stars in different colors on the
error bars display the significant improvement of , p-values less than 0.05
(green star for “ versus ,” red for “ versus ,” cyan for “
versus ,” and black for “ versus ”). (a) Lower left target. (b) Upper
right target.

The AUROCs for all subjects were compared, and their aver-
ages across all subjects are shown in Fig. 8 with standard errors
(error bars). Except “HO versus HL” for “Upper Right” target,
the AUROCs of are always significantly larger than the
others for all scenarios based on the stars in the figure, which
confirm the significant improvement of using one-tailed
t-test (p-values less than 0.05).
To compare the performance of NA-MEMD with other

frequency decomposition algorithms, we classified the gamma
band rhythms in the four motor tasks, using IIR and wavelet
(Morlet). All 60 classification rates for 10 subjects and six
combinations of motor tasks were computed, and their averages
across all subjects are illustrated in Fig. 9 with standard errors
and statistical significance of the performance of NA-MEMD
compared to IIR and wavelet. In most of scenarios, NA-MEMD
outperformed the other methods with higher mean of classifi-
cation rates. In particular, the stars in the figures confirmed that
NA-MEMD extract significantly more information to separate
the different motor tasks than wavelet for many cases. On the
other hand, the higher performance of NA-MEMD compared to
IIR was not significant and the mean classification rates of IIR
were higher than wavelet. The preprocessed EEG signals using
highpass (1 Hz ) and lowpass ( Hz) filter were linear due
to the filters designed based on Fourier theory [10] and thus
IIR filter, by design, was suitable for linear signal statistics. In
addition, the problem with the wavelet is its leakage generated



1090 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 22, NO. 5, SEPTEMBER 2014

Fig. 7. ROC curves for the classification performance of subject 7, produced using , and . Overall, ROC curves of attain smaller
false-positive and false-negative probabilities across the whole sweep of classification boundaries than the others. (a) Lower left target. (b) Upper right target.

Fig. 8. AUROC results between two different conditions using IMFs. The error
bars illustrate the standard errors. Overall, AUROCs using the sum of and
, gamma band components, are higher than those produced using the other

IMFs including the sum of all IMFs, (1–55 Hz). This is confirmed by the
one-tailed t-test and the stars in different colors on the error bars display the
significant improvement of , p-values less than 0.05 (green star for “
versus ” red for “ versus ,” cyan for “ versus ,” and black for
“ versus ”). (a) Lower left target. (b) Upper right target.

by the limited length of the basic wavelet function [7], and
Sørensen et al. demonstrated IIR outperformed wavelet de-
pending on the amount of noise [44]. The ROC curves for the
classification performances of NA-MEMD, IIR and wavelet
were also calculated and Fig. 10 shows the ROC curves for the
classification performance of subject 7. Overall, the AUROCs
of NA-MEMD look larger than the others. The AUROCs for

Fig. 9. Classification results between two different conditions using
NA-MEMD, IIR, and wavelet (Morlet). The error bars illustrate the standard
errors. Overall, the averages of the classification rates using NA-MEMD
are higher than those produced using the other methods. In many cases,
NA-MEMD outperformed the wavelet decomposition significantly, denoted by
the stars in green color. (a) Lower left target. (b) Upper right target.

all 10 subjects calculated using the three algorithms were com-
pared and the averages across all subjects are shown in Fig. 11.
Similar to classification results, the highest means of AUROCs
were obtained using NA-MEMD, and wavelet was significantly
outperformed by NA-MEMD for all six scenarios.

D. Prediction of Behavior Using Gamma Rhythm

We also investigated the prediction of behavior using clas-
sification results of the gamma rhythm by calculating
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Fig. 10. ROC curves for the classification performance of subject 7, produced using NA-MEMD, IIR filter, and wavelet (Morlet). Overall, ROC curves of
NA-MEMD attain smaller false-positive and false-negative probabilities across the whole sweep of classification boundaries than the others. (a) Lower left target.
(b) Upper right target.

Fig. 11. Results of AUROCs between two different conditions using
NA-MEMD, IIR and wavelet (Morlet). Error bars illustrate the standard errors.
Overall, the averages of the AUROCs using NA-MEMD are higher than those
produced using the other methods. In most cases, NA-MEMD outperformed
the wavelet decomposition significantly, denoted by the stars in green color.
(a) Lower left target. (b) Upper right target.

the correlation between classification rates and average behav-
ioral performance (2-D error of “HS”). Classification results in-
cluded only “HS” tasks (i.e., “HS versus HL,” “HS versus HO,”
and “HS versus SO” in Tables I and II were only considered).
Fig. 12(a) plots the correlation between the average hand to
target 2-D error (distance) for all “HS” trials and the average
classification rates of “HS versus HL,” “HS versus HO,” and
“HS versus SO.” The red and blue dots correspond to the lower
left and upper right targets, respectively, for all subjects. The
cases of lower left target and upper right target had meaningful
correlation coefficients of and , and the correlation
coefficient for both targets was significant, .

Fig. 12. Correlations (a) between gamma band classification rates and behavior
(2-D error), and (b) between gamma band ERS produced using NA-MEMD and
behavior. Note that the correlation coefficients are significant for both targets,
which means gamma rhythm during movement preparation can predict move-
ment. (a) Classification versus Behavior (2-D Err). (b) ERS versus Behavior
(2-D Err).

The correlation coefficients between behavioral performance
and classification rates using different frequency rhythms are
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Fig. 13. Event-related synchronization between 0 ms and 500 ms (movement planning) estimated using IMFs of NA-MEMD. “HS” denotes hand with saccade,
“HL” hand lift, “HO” hand only and “SO” saccade only. Note the more dynamic spatial differences in gamma band corresponding to the different conditions
compared to the other bands including .

TABLE III
CORRELATION BETWEEN CLASSIFICATION RATES PRODUCED USING

NA-MEMD AND BEHAVIOR (2-D ERROR DURING “HS” TASK). SIGNIFICANT
CORRELATION RATES ARE INDICATED IN BOLD. NOTE THE

CLASSIFICATION RATES OF , MOSTLY GAMMA BAND COMPONENTS, ARE
SIGNIFICANTLY CORRELATED WITH BOTH BEHAVIORAL PERFORMANCES TO

THE LEFT AND RIGHT STIMULI

TABLE IV
CORRELATION BETWEEN GAMMA BAND CLASSIFICATION RATES, PRODUCED
USING NA-MEMD, IIR, AND WAVELET (MORLET), AND BEHAVIOR (2-D
ERROR DURING “HS” TASK). THE SIGNIFICANT CORRELATION RATES

ARE INDICATED IN BOLD. NOTE THE CLASSIFICATION RATES
PRODUCED USING NA-MEMD ARE HIGHER THAN THE OTHERS

reported in Table III. Unlike the significant correlation coeffi-
cients for gamma rhythm , the correlation coefficients for
the other IMFs had low correlation coefficients. These results
imply that the gamma rhythm during motor planning had most
significant information about the four different motor tasks for
predicting hand movements. Table IV answers the question of
which algorithm (NA-MEMD, IIR, and wavelet) could extract
the most accurate gamma rhythm for predicting the behavior of
the subjects using the correlation coefficients for gamma rhythm
classification across all algorithms and performance character-
istics. Among the three algorithms, NA-MEMD had the highest
correlation for (p-values less than 0.05).

TABLE V
CORRELATION BETWEEN EVENT-RELATED SYNCHRONIZATION (ERS) ON P6
PRODUCED USING NA-MEMD AND BEHAVIOR (2-D ERROR DURING “HS”
TASK). SIGNIFICANT CORRELATION RATES ARE INDICATED IN
BOLD. NOTE THE ERS OF , MOSTLY GAMMA BAND COMPONENTS, HAS

HIGHER CORRELATION COEFFICIENTS THAN THE OTHERS

In our previous study [45], increased amplitude in the vicinity
of 300 ms after stimulus onset (P300) was found in the parietal
area for planning spatially directed movement separation. Werf
et al. [4], [5] showed gamma band power enhancement over
the parietal region during spatial attention of saccade and
movement planning using magnetoencephalography (MEG).
We looked into the gamma band power enhancement, ERS,
during “HS” task (Fig. 13). We found that ERS in parietal
region, particularly P6, was correlated with behavioral perfor-
mance of subjects, hand to target 2-D error.8 Similar to the
correlation coefficient between gamma band classification rates
and behavioral performance in Fig. 12(a) and (b) contains the
scatter plot of ERS on P6 versus hand to target distance errors,
for every subject and target. The correlation coefficient for the
left target is , for the right target it is , and for both
targets it is , each of which is significant .
This result indicates that more spatial attention to the targets
increases gamma band power in the parietal area. Table V
shows the correlation coefficients between ERS calculated

8This correlation method was used by Lenz et al. to show the relationship
between gamma band response in parieto-occipital region and performances of
healthy children and patients with attention-deficit/hyperactivity disorder [46].
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Fig. 14. p-value topoplots using a t-test for the difference of IMF powers between two conditions. Numbers under topoplots denote the number of channels whose
p values are less than 0.05. In general, the topoplots of have more number of significantly different channels than the others.

TABLE VI
CORRELATION BETWEEN GAMMA BAND ERS RATES, PRODUCED USING
NA-MEMD, IIR, AND WAVELET (MORLET), AND BEHAVIOR (2-D ERROR
DURING “HS” TASK). SIGNIFICANT CORRELATION RATES ARE
INDICATED IN BOLD. NOTE THE CLASSIFICATION RATES PRODUCED USING

NA-MEMD ARE HIGHER THAN THE OTHERS

using the other IMFs and behavioral performances of subjects.
Overall, the results of gamma band ERS using are higher
than the others. The correlation coefficients calculated using
IIR and wavelet were also estimated in Table VI, and they
demonstrated only NA-MEMD could produce the significant
ERS predicting the behavior of the subjects.

IV. DISCUSSION

We presented the changes of neural oscillations during the
planning of spatially (or nonspatially) directed reaches and sac-
cades using MEMD with a classification tool, SVM. Analysis
of EEG during the motor planning interval revealed that the
gamma band provided more information about the upcoming
movement than the other frequency bands. In addition, MEMD
provided higher levels of accuracy in classifying the different
tasks, based on the EEG, than did traditional signal processing
methods such as Fourier and wavelet transforms. Moreover,
the reaching accuracy of subjects after these motor planning
periods was significantly correlated with the separation rates,
which confirmed the accurate extraction of gamma band rhythm
corresponding to the tasks using MEMD. Furthermore, the cor-
relation between the power feature of gamma rhythm over the
parietal cortex and reaching accuracy also demonstrates the sig-
nificance of the gamma rhythm in planning spatially directed
movements.
What role might gamma oscillations play in spatially directed

movements? Although most studies of gamma oscillations have
focused on nonmotor functions, demonstrating the involvement

of gamma oscillations in attention and memory [47], [48],
there is a small but growing literature on the role of gamma
oscillations in motor control. Brown et al. have suggested that
gamma oscillations are prokinetic, facilitating the production of
movement in general [49], [50]. Moreover, gamma oscillations
in parietal cortex have been found to represent the planned spa-
tial direction for both of saccades [4] and reaching movements
[5]. Surface EEG reflects the synchronous activity of large
ensembles of rhythmically firing neurons. Such synchronous
firing of neurons in the gamma frequency band can serve as
a gain control mechanism [51], amplifying the effect of local
neuronal firing on downstream areas [48]. For both spatially
directed saccades and reaches, amplification of the effects of
local neuronal synchronization would increase the effectiveness
of transfer of motor planning information between brain areas.
In particular, communication between parietal and frontal
regions would be especially important for spatially directed
movements [52]. Synchronization in the gamma band could
thus help mediate spatially directed movements of the eyes and
arm through enhanced communication between parietal and
frontal brain regions.
We used the common spatial patterns algorithm to extract

features for the classification. The CSP algorithm is a spatial
filter, which projects multichannel signal onto a direction where
the separation between two classes can be maximized by con-
sidering their spatial distributions of variances in multichannel
electrodes such as the patterns of ERS topology in Fig. 13.
In particular, the ERS topologies of the gamma band, ,
in Fig. 13 illustrate the power increase over frontal as well as
parietal regions, while those of the other bands are mostly over
parietal regions. Fig. 14 showed had a higher number of
frontal channels with significant power differences between two
tasks, compared to the other IMFs. The increase of gamma ac-
tivity over frontal sites during movement planning also has been
found by Perfetti et al. [3]. The gamma band power changes
over all EEG channels, including frontal and parietal areas, as-
sociated with planning reaches and saccades to two spatial tar-
gets, resulted in the higher classification rates than use of the
other bands, including use of all bands.
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We have investigated the changes of EEG features associ-
ated with planning spatially directed movements of the hand
and eyes. These features can be used to improve motor imagery
BCI systems, which are controlled by imaging movement of
right and left hands [53]. Most of the motor imagery BCI sys-
tems only rely on movement planning of the hand without spa-
tial direction (left or right) and movement of the eyes. Using
the scheme of our experiment, it will be possible to increase
the number of controls of the motor imagery BCI system. For
example, these can be four different movement imagery tasks
for each hand. In our experiment, subjects used their right hand
only. For future work, we will look into the EEG features during
spatially directed movement planning of the left/right hands and
eyes.

V. CONCLUSION

We have shown that MEMD is a powerful tool for decom-
posing EEG into intrinsic oscillatory components, and that
components in the gamma band contain important features
associated with planning spatially directed movements of
the hand and eyes. Importantly, this analysis was based on
single-trial classification, and the classification accuracy was
significantly correlated with eventual movement accuracy—the
smaller the reaching errors were, the greater was the separation
of movement conditions based on classification of gamma
oscillations. The estimation of event-related synchronization
over the multichannel EEG showed more dynamic spatial dif-
ferences in gamma oscillations corresponding to the different
conditions than the others, which was consistent with the higher
variance of CSP features for gamma oscillation to produce the
best classification performance.

APPENDIX A
COMMON SPATIAL PATTERNS

A single trial data has an matrix ( is the number of
channels and the number of samples per channel). The spatial
covariance of , which is normalized, can be calculated from

(6)

where is the matrix transpose and is the sum of the
diagonal elements of . The spatial covariance for a
task, or , is produced by the averaged covariance matrix of
the trials. CSP trys to find a matrix and diagonal matrices

and ( , the identity matrix) with elements
such that

(7)

The composite spatial covariance is calculated as

(8)

where is factored as , where is the
eigenvector matrix, and is the diagonal matrix of eigen-
values. Using the whitening transformation, ,
the variances in the space spanned by are equalized, which
makes all the eigenvalues of equal to unity. Secondly,

let and , then and share the
common eigenvector matrix, that is

(9)

The final spatial filter that satisfies (7) is given by ,
since we assume the eigenvalues are sorted in a descending
order. Then the EEG signals can be projected as

(10)

Each column vector of is a spatial
filter, or simply a filter. In order to discriminate between two
motor imagery tasks, the variances of the spatially filtered sig-
nals using (10) are used as a feature. The row vectors

and ) from that maximize the
difference in the variance between the two groups are associ-
ated with the largest eigenvalues in and . These signals
are contained in the first and last rows of in (10), due to the
calculation of . The interesting features can be calculated
as

(11)

where the symbol denotes the variance.
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