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Perception of stereoscopic depth requires that visual systems solve a correspondence
problem: find parts of the left-eye view of the visual scene that correspond to parts of the
right-eye view. The standard model of binocular matching implies that similarity of left and
right images is computed by inter-ocular correlation. But the left and right images of the
same object are normally distorted relative to one another by the binocular projection, in
particular when slanted surfaces are viewed from close distance. Correlation often fails
to detect correct correspondences between such image parts. We investigate a measure
of inter-ocular similarity that takes advantage of spatially invariant computations similar to
the computations performed by complex cells in biological visual systems. This measure
tolerates distortions of corresponding image parts and yields excellent performance over
a much larger range of surface slants than the standard model. The results suggest that,
rather than serving as disparity detectors, multiple binocular complex cells take part in
the computation of inter-ocular similarity, and that visual systems are likely to postpone
commitment to particular binocular disparities until later stages in the visual process.
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INTRODUCTION
Stereoscopic vision depends on binocular matching: a process that
finds which parts of the left and right eye’s images correspond
to the same source in the visual scene (Figure 1). The differ-
ence between positions of the corresponding image parts is called
binocular disparity, a key source of information for perception of
stereoscopic depth.

In the standard view of binocular matching, the corresponding
parts of left and right images are found using inter-ocular correla-
tion as the measure of image similarity. This view is supported by
neurophysiological evidence. The disparity energy model (Ohzawa
et al., 1990; Qiang, 1994; Cumming and Parker, 1997; Ohzawa,
1998; Cumming and DeAngelis, 2001; Haefner and Cumming,
2008) describes function of binocular complex cells which are
thought to play a key role in the computation of binocular dispar-
ity (and which are sometimes described as “disparity detectors”).
Responses of modeled binocular complex cells to some stimuli are
well approximated by a computation similar to inter-ocular corre-
lation (Fleet et al., 1996; Qian and Zhu, 1997; Anzai et al., 1999),
and so a simplifying assumption is often made that inter-ocular
correlation can be used to predict outcomes of the computation of
similarity in biological vision. In psychophysical studies of stere-
opsis, for example, inter-ocular correlation is commonly used to
explain limitations of stereoscopic vision (Tyler, 1973; Cormack
et al., 1991; Banks et al., 2004, 2005; Filippini and Banks, 2009),
in particular the decline in the ability for stereopsis at large slants
of stimulus surfaces.

The computation of similarity of left and right images using
inter-ocular correlation has two shortcomings. First, correlation
of image regions fails to capture an important characteristic of

complex cells: spatial invariance of their responses (even though
the disparity energy model does capture this invariance). The dis-
regard for spatial invariance misses an important aspect of the
biological computation. Studies of other visual functions showed
that spatial invariance endows visual systems with important
computational abilities, e.g., in object perception (Riesenhuber
and Poggio, 1999; Ullman et al., 2002; Yu et al., 2002; Serre et al.,
2007a,b) and in efficient encoding of natural scenes (Hyvarinen
and Hoyer, 2000; Karklin and Lewicki, 2009).

Second, inter-ocular correlation is biased in favor of stimuli
that are uncommon in the natural viewing conditions. Inter-
ocular correlation is “rigid” in the sense it does not tolerate large
distortions of corresponding image parts: correlation peaks where
image parts are identical and it rapidly declines where image
parts are dissimilar. But only rarely do identical left and right
images occur in the natural environment. Because of the geom-
etry of binocular projection, parts of the left and right images are
generally dissimilar (Figure 1A), especially when stimulus sur-
faces are slanted and viewed from a short distance (Pollard et al.,
1986; Filippini and Banks, 2009). It is therefore not surprising
that a recent study of human perception found that the corre-
lation operation fails to explain human perception in stimuli that
involve slanted surfaces (Allenmark and Read, 2010). We refer to
this implicit bias of matching by correlation as the assumption of
uniform disparity.

In the following we propose that the computation of binocular
similarity in biological vision should be modeled using an oper-
ation which, first, takes advantage of the spatial invariance found
in binocular complex cells and, second, avoids the inapt assump-
tion of uniform disparity. We investigate a “flexible” measure of
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FIGURE 1 | Binocular geometry. (A) A slanted plane with three dots painted
on it is viewed from two slightly different vantage points. Left and right
projections of the dots are shown in the insets. Coordinates of dot
projections in the two images are generally different, illustrated for one of the
dots using vector δ. The horizontal extent of this vector is called horizontal
binocular disparity. The triangle formed by the three dots in the right image is
distorted with respect to the triangle in the left image (B) Examples of
stereograms (image pairs) used in the present study: a random-dot

stereogram on the top and a stereogram with 1/f luminance distribution on
the bottom. Both stereograms depict a slanted plane which the reader may
experience by cross fusion. (C) Binocular correspondence. The visual system
must establish which parts of the two images correspond to the same
source in the scene. A pair of such corresponding image parts is
shown in a stereogram of a natural scene (“Accidental stereo pair.” Online
image. Flickr. http://www.flickr.com/photos/abulafia/829612/, Creative
Commons).

similarity that tolerates distortions of the corresponding parts of
left and right images. We implement this measure using a MAX-
pooling operation, which has been successfully used for modeling
spatially invariant computations by complex cells in service of
other functions of biological vision (Riesenhuber and Poggio,
1999; Serre et al., 2007a,b).

In a series of computational experiments, we simulate a tilt dis-
crimination task using stimuli that portray a wide range of surface
slants. The stimuli are composed of two types of texture: random
dots (common in psychophysical studies of stereopsis, e.g., Banks
et al., 2004; Filippini and Banks, 2009; Allenmark and Read, 2010)
and patterns that imitate statistics of luminance in natural images
(Ruderman and Bialek, 1994).

We find that the spatially invariant computation of inter-
ocular similarity supports excellent performance over a signifi-
cantly larger range of stimulus slants than the rigid computation.
This is because the flexible measure of similarity can adapt to dif-
ferent amounts of inter-ocular distortion in different parts of the
stimulus.

We also find that in stimuli with naturalistic image statis-
tics, the flexible measure is more effective than methods pre-
viously advanced to overcome inter-ocular distortions, such as
image blurring, supporting the view that spatially invariant

computation of inter-ocular similarity is particularly suitable for
stereoscopic vision in the natural visual environment.

MODELS AND METHODS
We first describe the two methods for measurement of inter-
ocular similarity compared in our experiments: rigid matching
and flexible matching (Figure 2). We then describe the com-
putations we used to evaluate performance of these matching
methods. (We chose to do so using a tilt discrimination task
because it allowed us to compare matching methods compre-
hensively: across many directions of disparity change, which is
particularly important in the complex stimulus of Experiment 2.)

RIGID MATCHING
Normalized Cross-correlation is commonly used for modeling of
binocular matching in biological vision (Tyler and Julesz, 1978;
Cormack et al., 1991; Banks et al., 2004, 2005; Filippini and Banks,
2009). For image parts (“patches” or “templates”) L from the left
image and R from the right image, this measure is

C(L, R) = 1

σLσR

N∑
x,y=1

(L(x,y) − L)(R(x,y) − R), (1)
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FIGURE 2 | Rigid and flexible matching. To determine corresponding
patches, the system computes visual similarity between a left image patch
(“template”) at location i and all the patches on the epipolar line of the right
image, at locations j1, j2 and so on (only three right image patches are
shown). Right image patch with largest similarity Si,j is considered the
corresponding patch. (A) matching with the rigid similarity measure. A patch
from the left image, is compared to patches in the right image, using a

correlation type operator. The operation is rigid in the sense that patches are
compared in a pixel wise manner (Equation 1). (B) matching with the flexible
similarity matching. The flexible matching allows to match corresponding
patches that are distorted due to viewing geometry. This is achieved by
searching through a space of possible distortions and finding the particular
distortion that best suits the “template”. The implementation involves spatial
invariant computational units, illustrated in detail in Figure 3.

where L(x,y) and R(x,y) are the luminances at coordinates (x, y),
L and R are the average luminances, σL and σR are the standard
deviations of luminance distributions, and N is the number of
image elements within each patch used in the computation.

This measure is “rigid” in the sense the inter-ocular similar-
ity is computed using unaltered image patches, i.e., as they are
in the left and right projections of the visual scene (Figures 2A
and 3A). The rigid computation of similarity favors matching of
image parts that are identical (up to a luminance multiplication
and shift), which is why estimates of similarity of correspond-
ing patches rapidly decline when luminance patterns in the left
and right images are misaligned (Figure 3C, top). Thus, rigid
matching is likely to miss binocular correspondences when local
image distortions are large, which happens when surface slant is
high.

To contrast the rigid measure of inter-ocular similarity with
the measure we review next (Equation 5), we write it as

S
rig
i,j = C(Li, Rj), (2)

where C is as in Equation 1, and Li and Rj stand for the left and
right image patches of the same size.

FLEXIBLE MATCHING
We compared the rigid measure of inter-ocular similarity with
another measure, introduced here, which we called “flexible”
because it tolerates small distortions of corresponding image
parts. Now the computation of Equation 1 is applied indepen-
dently to parts (“sub-patches” or “sub-templates”) of L and R.
The parts may undergo small independent displacements with
respect to their original locations, emulating properties of multi-
ple complex cells tuned to adjacent spatial locations (Riesenhuber
and Poggio, 1999; Ullman et al., 2002; Serre et al., 2007a,b;
Ullman, 2007).

Flexible matching is illustrated in Figures 3B–D. Patch Li is
divided to T parts: sub-templates Lk

i , where k ∈ [1, . . . , T] is the

sub-template index. (In the experiments we tested divisions of
the templates into different numbers of sub-templates of equal

size: four, nine, and 16.) Patch similarity Sflex
i,j is computed in two

steps:

1. Correlation is determined as in Equation 1 separately for
each sub-template Lk

i , over a set of contiguous horizontal

coordinates M
j
k (Figures 3C–D). The maximal similarity is

Sk
i,j = max

u∈M
j
k

(
C(Lk

i , Rk
u)

)
, (3)

where u is the horizontal position of sub-template in the right
image. Equation 3 is the MAX-pooling operation. Length μ

of set M
j
k is called template flexibility. It is a range of loca-

tions near location j in the right image, for which sub-template
similarities are computed, such that

μ = max
(

M
j
k

)
− min

(
M

j
k

)
+ 1. (4)

Template flexibility determines the range of inter-ocular dis-
tortions tolerated by the matching procedure. (In these exper-
iments, all sub-templates had the same flexibility μ.)

2. Results of MAX-pooling are combined across sub-templates:

Sflex
i,j = 1

T

T∑
k=1

Sk
i,j. (5)

This way, best match is found for each sub-template—over
a small image vicinity, independent of other sub-templates,
and without computing disparities for each sub-template—
possibly “warping” the template. The maximal amount of warp-
ing depends on template flexibility μ. (As explained in section
Computation of tilt below, visual systems may automatically select
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FIGURE 3 | Details of rigid and flexible matching. (A) Rigid matching.
Patch Li at horizontal position i in the left image is compared to several
patches in the right image, at positions j1, j2, and j3. For each pair of left and
right patches, similarity is computed as in Equation 1, yielding similarity
measures Si,j1 , Si,j2 , and Si,j3 . A solution to the correspondence problem is

the pair of patches for which similarity is the highest. (B) Implementation of
flexible matching. Template Li in the left image is divided to four

sub-templates Lk
i , k ∈ [1, . . . 4]. Binocular similarity is computed for each

sub-template over a small range of horizontal locations (explained in panel D).
This way, highest similarity is found separately for each sub-template,
illustrated here by different displacements of the sub-templates.
(C) Illustrations of rigid and flexible matching. Top: Rigid matching. A
left-image patch (a “template”) is superimposed on the corresponding
right-image patch. Image features (represented by white disks) in the left and
right patches are not aligned, yielding low correlation between the patches

(Equation 1). Bottom: Flexible matching. Now the left-image patch
(“template”) is divided to parts (“sub-templates”) which can “move”
independent of one another and thus warp the basis template. The warping
enables good registration of image features despite distortions induced by
binocular projections. (D) Parameters of flexible matching. In this example,
similarity of template Li at location j of the right image is computed using
flexible matching. Template Li is divided to four sub-templates Lk

i ,
k ∈ [1,. . . 4]. Correlation values are computed for sub-template Lk

i over set of

contiguous locations M
j
k . M

j
k is shown for one sub-template (k = 1), indicated

by the double arrow. Size μ of M
j
k is called template flexibility. Computing

correlation of Lk
i over locations M

j
k in the right image, and finding the

maximal value, yields the sub-template similarity Sk
i,j (MAX-pooling operation,

Equation 3). This process is repeated for each sub-template. The maximal
correlation of the four sub-templates are averaged to obtain the measure of
similarity of template Li at location j in the right image (Equation 5).

the magnitude of μ that is most suitable for the local slant in the
stimulus.)

COMPUTATION OF DISPARITY
In both rigid and flexible methods, inter-ocular correspon-
dences are found by computing similarity (S) between multiple
parts of the left and right images of the scene (Figures 1, 2).
Suppose a small part of the left image, centered on location i,
is compared to multiple parts of the right image, at locations j
(Figure 3A). (For simplicity, we consider only image parts at the
same height in the two images, i.e., we assume the epipolar con-
straint; Hartley and Zisserman, 2003). Thus, Si,j is the similarity
between image patches at locations i and j, in the left and right

images, respectively. The patch at j∗ that is most similar to the
patch at i is a solution to the correspondence problem:

j∗ = arg max
j

Si,j, (6)

such that the estimated binocular disparity at i is

δi = j∗ − i. (7)

COMPUTATION OF TILT
We compared how efficiently the rigid and flexible matching
methods estimated inter-ocular similarity using a winner-take-all
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(WTA) computation (which is believed to be widely implemented
in cortical circuits, e.g., Abeles, 1991; Sakurai, 1996; Lee et al.,
1999; Flash and Sejnowski, 2001). Assuming that different mag-
nitudes of template flexibility μ correspond to different sizes of
respective fields in complex cells, the WTA computation amounts
to the competition between complex cells with respective fields of
different sizes.

We simulated estimation of tilt at point P in the left image
using several samples of disparity δi: six points Xi forming vertices
of a regular hexagon centered on P (Figure 4A). Disparities δi

were computed as in Equations 6–7 for each sampling point. The
similarity measure of Equation 6 was implemented separately for
each matching method—rigid matching, flexible matching with
fixed μ, and flexible matching with variable, “adaptive” μ—each
leading to a separate estimate of tilt, as follows.

We took advantage of the fact that the sum of vectors
−→
PXi,

weighted by disparities δi:

g =
∑

δi

−→
PXi, (8)

is proportional to surface gradient at P. Tilt θ at point P, com-
puted separately for each matching method, therefore is

θ = arctan
gy

gx
, (9)

where g = [gx, gy]T . The relation between disparity gradient g,
inter-ocular distance I, slant s, and viewing distance d is (Pollard
et al., 1986):

|g| = I

d
arctan(s). (10)

Final estimates of tilt were derived by way of population vote,
in which several sets of sampling points were used to provide
independent estimates.

Population vote for rigid matching
In rigid matching, tilt at point P was estimated using four dif-
ferent sets of sampling points, yielding four tilt estimates. Each
set contained six different points, all centered on P (Figure 4B).
The four estimates were assembled in a one-dimensional voting

P

X i

P

Tilt
0 15 30 45 60 75 90

1

3

5

7--
0

1

2

3

4

Tilt
0 15 30 45 60 75 90

µ

A B

C D

FIGURE 4 | Computation of tilt. (A–B) Surface tilt at point P in the left
image is computed using disparities δi , i ∈ [1,. . . 6] estimated for six
sampling points: vertices of a hexagon centered on P . (Different sets of
sampling points are shown in A and B. Four such sets were used for
computation of one tilt.) Surface gradient (gray arrows) is proportional to

weighted vector sum
∑

δi
−→
PXi . The computation of tilt was repeated several

times, using a different set of samplings points every time, all centered on P .
(C) Each set of sampling points provides one vote for tilt estimate. Tilt
estimates from multiple sampling sets are combined in a vector whose

entries represent numbers of votes for each particular tilt. Intensities of cells
in this figure represent the number of votes. The tilt that receives most votes
wins. (D) An example of voting matrix used in the adaptive-flexible approach.
The process described in Figures 4A–C is repeated for different magnitudes
of template flexibility μ (four magnitudes are used in this illustration), yielding
multiple estimate vectors concatenated in a voting matrix. The row that
corresponds to the most suitable μ is likely to have most consistent votes.
Accordingly, the cell with a largest number of votes is selected. (Here, it is
the μ of 5 and the tilt of 30.)
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matrix, whose entries were cumulative counts of “votes” support-
ing a particular tilt (Figure 4C). (In a separate experiment, we
determined that performance of the voting method, using several
sampling sets, was better than performance based on the same
number of sampling points in one large set.)

Population vote for flexible matching
In flexible matching, the voting matrix was two-dimensional. Tilt
estimates were obtained: for different sampling sets, as in rigid
matching, but also for different magnitudes of template flexibil-
ity μ (Figure 4D). The different entries in the matrix represented
different hypotheses about the tilt. As in rigid matching, the
entry with the largest number of votes was taken as the indi-
cator of tilt. Since flexible matching with a fixed magnitude of
μ favored a particular range of slants (Figure 7), this procedure
found the magnitude of μ that was most useful for the present
stimulus.

We summarize the WTA computation in pseudo-code:

1. Initialize a 4 × 7 voting matrix to 0,
2. For each magnitude of template flexibility μ (e.g., μ ∈ [1 3 5 7]):

For each set of sampling points (four sets of six points each):
i. compute disparity (Equations 6–7),

ii. compute tilt (Figure 4A),
iii. increment the voting matrix cell that corresponds to the

estimated tilt and the magnitude of template flexibility
(Figure 4D).

3. Select the tilt indicated by the cell with a highest number of votes.

Each cell in the voting matrix contained the number of times a
particular tilt was voted for, using particular template flexibility
μ (Figure 4D). The winning tilt was the one that received most
votes. We call this computation “adaptive” because it selects a
magnitude of μ that is most suitable for current stimulation. We
refer to computations that use a single magnitude of μ, i.e., where
the voting matrix consists of a single row, as “flexible matching
with fixed μ”.

We performed two experiments. In Experiment 1, each stimu-
lus represented a planar surface and thus it was characterized by a
single tilt (of seven possible tilts), such that a single voting matrix
was used for each stimulus (with 28 entries generated by four
magnitudes of template flexibility and seven tilts). We also tested
larger magnitudes of μ and larger numbers of sub-templates, as
described in Results.

In Experiment 2, the stimulus represented a concentric sinu-
soidal surface whose tilts spanned the range of 0–360◦. A voting
matrix of 4 × 360 was derived for every location in the stimuli.
The resulting matrices were each filtered using a 1 × 20 Gaussian
kernel, to ensure additive contribution of the nearby votes.

Notably, the computation of tilt made no commitment
to particular magnitudes of template flexibility, and conse-
quently no commitment to particular magnitudes of binoc-
ular disparity. Multiple hypotheses about template flexibility
and binocular disparity coexisted, yielding a single estimate
of tilt.

STIMULI
Stereoscopic stimuli were generated using two types of luminance
patterns and they depicted two types of surfaces.

Luminance patterns
Images of stimulus stereograms contained either textures with a
1/f luminance power spectrum or random-dot textures. The for-
mer reproduced the scale invariant property of natural scenes
(Ruderman and Bialek, 1994). The latter are commonly used in
psychophysical and computational studies of stereopsis. In both
cases, the image pairs were obtained by first generating a source
image (random-dot or 1/f) and then displacing pixels by half the
disparity signal in opposite directions, to obtain the left and right
images (as in Banks et al., 2004). In random-dot sources images,
the dots formed a perturbed hexagonal grid of 40 × 40 dots. Dots
were displaced from positions in a hexagonal grid in random
directions, uniformly in all directions, and for a random distance
of up to half of inter-dot distance. The 1/f source images were
obtained by first generating a white-noise image, whose Fourier
amplitude was then modified to obtain the desired power spec-
trum. Images of both kinds were 512 × 512 pixels. Left and right
images were blurred using a Gaussian kernel of size 6 × 6 pix-
els and standard deviation of 1.5 pixels, to emulate the effect of
the optical point-spread function (Campbell and Gubisch, 1966;
Banks et al., 2004).

Surfaces
In Experiment 1, stimuli depicted flat surfaces at different slants
and tilts (Figures 1A,B), using both random-dot and 1/f lumi-
nance textures. For each combination of slant and tilt, we gen-
erated 100 random-dot stimuli and 100 naturalistic stimuli.
The tilts ranged from 0 to 90◦, and surface disparity gradients
(Equation 10) ranged from 0 to 0.95 (Figure 5). Tilt estimates
were derived for stimulus center using Equation 10. For each
slant, tilt, and stimulus type (random-dot or 1/f), we computed
accuracy of tilt discrimination using the rigid and flexible match-
ing methods. (Accuracy is the frequency of cases where the esti-
mated tilt was equal to the true tilt). Figures 7–8 are summaries
of accuracy, plotted as a function of slant for the two matching
methods, using different luminance patterns in the stimulus.

In Experiment 2, the stimuli were generated using only
1/f luminance textures, depicting a surface whose depth was mod-
ulated according to a concentric sinusoidal function, illustrated in
Figure 6.

The slope of this surface is the disparity gradient. The larger
the slope, the stronger the inter-ocular dissimilarity, and so a
larger template flexibility is needed to attain accurate binocular
matching.

RESULTS
EXPERIMENT 1
We measured accuracy of tilt estimation as a function of slant
using different matching methods:

Rigid matching
Outcomes of rigid matching in Experiment 1 are represented by
the black curve in Figure 7, for 1/f stimuli in panel A and for
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FIGURE 5 | Surface parameters. Surface orientation in three dimensions
is parameterized by slant and tilt. Slant is the angle between the line of
sight and surface normal. In our experiments, surfaces were characterized
by their disparity gradients. (The relationship of disparity gradient and slant
is explained in Models, Equation 10.) Tilt is the angle between the
projection of surface normal on the frontal plane and the (0, x) axis in the
frontal plane.

random-dot stimuli in panel B. For 1/f stimuli, performance of
the rigid procedure peaked at the disparity gradients of 0.1–0.4.
For random-dot stimuli, performance peaked near the disparity
gradient of 0.16 and then abruptly decreased, falling to half of
its peak performance at the disparity gradient of 0.2. For dispar-
ity gradients larger than 0.4 in 1/f stimuli, and larger than 0.16
in random-dot stimuli, the inter-ocular distortion of correspond-
ing patches was too large for the rigid procedure to find correct
matches, which explains the sharp decrease in performance.

Flexible matching with fixed flexibility
Outcomes of flexible matching with fixed magnitudes of μ are
represented by the colored curves in Figure 7, for 1/f stimuli in

panel A and for random-dot stimuli in panel B. (The black curve
represents outcomes of rigid matching.) As template flexibility
increased, the peak of performance shifted toward the higher dis-
parity gradients for both 1/f and random-dot stimuli. Maximal
performance was high for small and intermediate magnitudes of
μ, but it deteriorated at the large magnitudes of μ (9 and 13).

The preference for higher disparity gradients at larger mag-
nitudes of μ is expected because large template flexibility entails
high tolerance to dissimilarity of corresponding image patches.
But as flexibility μ is increased yet further, the matching is increas-
ingly afflicted by spurious matches, which explains the drop of
performance at the two largest magnitudes of μ.

In other words, Figure 7 captures a tradeoff between effects
of different magnitudes of template flexibility. Flexible match-
ing with low magnitudes of μ favors matching of similar image
patches, making the matching procedure miss the correspond-
ing patches under high inter-ocular deformation at large disparity
gradients. Flexible matching with high magnitudes of μ does not
miss the correspondences under high inter-ocular deformation,
but it is prone to register spurious matches. In effect, perfor-
mance curves for flexible matching with fixed magnitudes of μ

shift along the dimension of disparity gradient: the larger μ the
farther the shift toward large disparity gradients.

Flexible matching with variable flexibility
As demonstrated in Figure 7, a fixed amount of template flex-
ibility favors a particular range of slants. A system employing
different magnitudes of template flexibility would be able to take
advantage of the degree of flexibility that is most suitable for cur-
rent stimulus and thus yield reliable performance for a large range
of slants. Performance of such an “adaptive” system (described
in section “Population vote for flexible matching” in “Models
and Methods”) is represented by the red curve in Figure 8. (The
black curve is the same as in Figure 7; it represents outcomes of
rigid matching.) For 1/f stimuli, maximal performance of adap-
tive matching was reached for disparity gradients in the range
of 0.1–0.6. For the random-dot stimuli, performance of adap-
tive matching peaked at the disparity gradient of 0.2. The red
curve in Figure 8 effectively circumscribes the pertinent curves
of Figure 7. (Very large magnitudes of template flexibility did

FIGURE 6 | Stimuli used in Experiment 2. (A–B) Left and right images of the stimulus. (C) Disparity signal encoded in the image pair in panels A–B. Surface
color represents the magnitude of disparity gradient. This stimulus contains the entire range of tilts (0–359◦ ).
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FIGURE 7 | Tilt discrimination performance in Experiment 1: rigid

matching vs. flexible matching with fixed flexibility. (A) Results for
1/f stimuli, using rigid matching (black curve) and flexible matching with
fixed magnitudes of template flexibility μ (colored curves). Accuracy
of tilt estimation is plotted as a function of surface slant. (Perfect

performance is 1 and random performance is 0.14.) In flexible
matching, performance depends on template flexibility μ: the
higher the template flexibility, the larger the slant at which performance
peaks. (B) Results for random-dot stereograms, using the same
convention as in panel A.
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FIGURE 8 | Tilt discrimination performance in Experiment 1: rigid

matching vs. flexible matching with adaptive selection of

template flexibility. (A) Results for 1/f stimuli. Flexible matching with
variable template flexibility (red curve) attained a much larger range
of correct classification than rigid matching (black curve). (The gray curves
represent performance of flexible matching with different fixed magnitudes

of template flexibility μ, the same as those rendered as colored curves
in Figure 7, but excluding μ of 9 and 13.) (B) Results for random-dot
stimuli, using the same convention as in panel A. In both panels,
the arrows mark the magnitudes of disparity gradient at which the
descending arms of performance curves crossed the 0.8 level of
accuracy.

not affect performance of the adaptive process, because match-
ing performance at the large magnitudes of μ—here μ ≥ 9—was
crippled by spurious matches.)

To summarize, flexible matching yields much better perfor-
mance than rigid matching at large disparity gradients, explained
by the capability of flexible matching to identify corresponding
image parts distorted due to the viewing geometry. Provided mul-
tiple degrees of flexibility, flexible matching is also capable of
reliable performance at a much larger range of disparity gradients
than rigid matching.

REDUCTION OF INTER-OCULAR DISTORTIONS BY IMAGE BLUR
A method previously proposed to facilitate binocular matching
and overcome inter-ocular distortions is to blur images. Blurring

by the front-end (optical and post-optical) stages of the bio-
logical visual process (Campbell and Gubisch, 1966; Geisler,
1989) scatters luminance of monocular image features that do
not align across the left and right images, thus improving
inter-ocular registration of the features (e.g., Berg and Malik,
2001).

We applied Gaussian horizontal blur to each stimulus image
of our stimuli. In Figures 9A,B we plot tilt discrimination per-
formance using different amounts of blur, parameterized by size
σ of the blurring kernel, for 1/f stimuli in panel A and random-
dot stimuli in panel B. For 1/f stimuli, blur marginally improved
performance of rigid matching, using σ ∈ [1 2 3]. (Results of rigid
and flexible matching without blur are also shown, using the same
black and red curves as in Figure 8). Increasing σ further reduced
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FIGURE 9 | Effect of blur and template size. (A) Effect of image blur on
matching performance in 1/f stereograms. The blue, green, and orange
curves represent results of matching using different strengths of blur. The
blurring marginally increases the range of perceived slants and performance
of rigid matching. Even at very large blur (σ = 8 in the figure) the range of
high performance is wide, but the maximal performance of unity is never
reached. The curves representing performance of adaptive (red) and rigid
(black) matching (using 33 × 33 pixel templates) are copied from Figure 8A

for reference. (B) Effect of blur in random-dot stereograms. Here, the blurring
significantly improves performance of the rigid method. For σ = 2 and 3,
the range of slants for correctly identified tilts is wider than in the
adaptive-flexible approach (red curve, as in Figure 8B.) Result for the blur of

σ = 8 is not shown here to avoid clatter, as performance of rigid matching
with the blur of σ = 3 already exceeds performance of flexible matching.
(C) Effect of template size in rigid matching with 1/f stimuli. Rigid matching
using templates smaller (17 × 17 pixels, blue curve) and larger (45 × 45,
orange) than the original size (33 × 33, black) yielded approximately the same
performance as the templates used in the rest of the study. (D) Effect of
template size in rigid matching with random-dot stimuli. Performance of the
larger template size (45 × 45 pixels, orange) is approximately the same as
performance of the original size (Figure 7B). Performance is significantly
reduced for smaller templates (17 × 17 pixels, blue). The curves representing
performance of adaptive (red) and rigid (black) matching with the 33 × 33
pixels templates are copied from Figure 8B.

the peak performance of rigid matching, such that it failed to
reach accuracy of 1 (shown for σ = 8 in panel A).

For random-dot stimuli, however, blur significantly improved
performance of rigid matching, yielding better results than
flexible matching. That is, advantages of flexible matching
hold for the naturalistic stimuli and not for the random-dot
stimuli.

ROLE OF TEMPLATE SIZE
We ruled out the possibility that the better performance of flex-
ible matching can be accounted for by a particular choice of
template size. We did so by evaluating performance of a rigid
matching procedure with template sizes 17 × 17 and 43 × 43
pixels (original size: 33 × 33 pixels). The results are plotted in
Figure 9: for 1/f stimuli in panel C and for random-dot stim-
uli in panel D. The plots indicate that flexible matching (red
curve, also shown in Figure 8A) performs significantly better than
rigid matching with the other template sizes. We also plot per-
formance of rigid matching using the (original) template size

of 33 × 33 pixels (black curve, for comparison). Performance of
the flexible model for template sizes 17 × 17 and 43 × 43 pixels
(not shown in this figure to avoid clutter) was similar to per-
formance of the adaptive procedure with template size 33 × 33
used in Experiment 1. Notably, performance of rigid matching is
worse than that of flexible matching when the size of rigid tem-
plates is the same as the size of sub-templates of flexible matching
(Figures 9C,D).

EFFECT OF THE NUMBER OF SUB-TEMPLATES
We repeated the above experiments using a larger numbers of
sub-templates: nine and 16, using respectively 3 × 3 and 4 × 4
square sub-templates, 11 pixels wide for nine sub-templates and
9 pixels wide for 16 sub-templates. (Sub-templates slightly over-
lapped in the latter case since the 33-pixel templates did not evenly
divide to the 9-pixel sub-templates.)

Results of matching with the larger number of sub-templates
for fixed μ are shown in Figure 10 for random-dot and
1/f stimuli. In comparison to results for the four sub-templates

Frontiers in Computational Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 47 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Vidal-Naquet and Gepshtein Spatially invariant computations in stereoscopic vision

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Rigi d
Flex μ=3
Flex μ=5
Flex μ=7
Flex μ=9
Flex μ=13

Disparity  gradient Disparity gradient

9 sub-templates  9 sub-templates

16 sub-templates 16 sub-templates

A B

C D

A
cc

ur
ac

y
A

cc
ur

ac
y

FIGURE 10 | Effect of the number of sub-templates. Performance curves
for different numbers of sub-templates with fixed magnitudes of μ: nine
sub-templates in panels A and B, and sixteen sub-templates in panels C

and D; for 1/f stimuli in A and C, and for random-dot stimuli in B and D. In 1/f

stimuli, increasing the number of sub-templates improved performance for
large magnitudes of μ (cf. Figure 7A where results are shown for four
sub-templates). In random-dot stimuli, accuracy improved for nine
sub-templates but it dropped for sixteen sub-templates (cf. Figure 7B).

(Figure 7), the larger number of sub-templates improved per-
formance at high magnitudes of μ (9 and 13) in the 1/f stimuli
(Figures 10A and C), consistent with the view that the increased
flexibility of matching has a larger tolerance to inter-ocular
distortions. In the random-dot stimuli, performance improved
for nine sub-templates but did not improve for sixteen sub-
templates (Figures 10B and D), indicating that for the scarce
luminance distribution in the random-dot stimuli, the additional
flexibility of matching was beneficial up to a point at which the
smaller sub-templates failed to capture patterns of luminance
sufficiently unique to support reliable matching.

Figure 11 summarizes performance of the adaptive system that
employs different numbers of sub-templates. Increasing the num-
ber of sub-templates improved performance, in particular for 1/f
stimuli. (Now all magnitudes of μ were used in the adaptive com-
putation since performance improved at large μ with nine and
sixteen sub-templates, in contrast to the lack of such improve-
ment with four sub-templates.) The range of disparity gradients
at which performance was high increased with the number of
sub-templates in the 1/f stimuli (panel A). But in random-dot
stimuli performance improved with nine sub-templates while it
was impaired with sixteen sub-templates, as explained in the
previous paragraph (Figure 11A).

EXPERIMENT 2
In Experiment 2 we investigate the ability of flexible match-
ing to tolerate different amounts of inter-ocular distortion in
different parts of the stimulus. Now we used a complex stim-
ulus that contains multiple slants (Figure 6). We applied rigid
and flexible matching procedures at all locations in this stimu-
lus yielding maps of estimated tilt. Flexible matching employed
four sub-templates. Instead of the hexagonal sampling used in
Experiment 1, now positions of the sampling points were ran-
domized (or else the regular placement of sampling points created
artifacts in maps of estimated tilt) while care was taken that the
arrangement of sampling points did not introduce a directional
bias (i.e., that the covariance matrix of sample-point coordi-
nates was proportional to the identity matrix and so Equation 8
held).

Figure 12 presents the map of true tilt in panel A, and the maps
computed using different matching methods in panels B and C.
Visual inspection of the maps makes it clear that flexible match-
ing yielded a consistently more accurate tilt estimation than rigid
matching. In particular, rigid matching performed poorly where
the disparity gradient was large: on the flanks of the central peak
of disparity. The tilt map by flexible matching is significantly more
similar to the map of true tilt.

Frontiers in Computational Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 47 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Vidal-Naquet and Gepshtein Spatially invariant computations in stereoscopic vision

A B

FIGURE 11 | Performance of the adaptive computation. (A) In 1/f stimuli,
the range of disparity-gradients for which performance was good increased
as a function of the number of sub-templates. (B) In random-dot stimuli,
performance improved for nine sub-templates, but further increase in the

number of sub-templates impaired performance. The arrows mark the
magnitudes of disparity gradient at which the descending arms of
performance curves crossed the 0.8 level of accuracy. The red curves are the
same as in Figure 8.
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FIGURE 12 | Results of Experiment 2. (A) Map of tilts in the stimulus.
(B) Tilt map reconstructed using the flexible matching procedure with
variable template flexibility. (C) Tilt map reconstructed using the rigid
matching procedure. (D) Map of the magnitudes of μ selected by the
flexible matching procedure at each stimulus location. (For clarity, the map
was smoothened using a Gaussian kernel of size 5 × 5 pixels and of
standard deviation equal to 1 pixel).

In Figure 12D we plot the magnitudes of template flexibility μ

selected by the flexible matching procedure with variable template
flexibility at each location in the stimuli. The plot shows that high
magnitudes of μ were preferred where the disparity gradient was
high (on the flanks of the disparity peak) and low magnitudes of
μ were preferred where the gradient was low. The light ring in the

periphery corresponds to the trough of disparity, where disparity
gradient was zero and surface tilt was undefined. At these points,
no particular magnitude of μ was preferred.

We computed mean errors of tilt estimated using the differ-
ent matching methods: rigid, flexible with fixed magnitudes of μ,
and flexible with variable magnitudes of μ. The mean error of tilt
estimation was the mean absolute difference of the estimated and
true tilts, modulo 180◦, across all stimulus pixels. The mean error
was below 5◦ for flexible matching, and it was larger than 30◦ for
rigid matching.

DISCUSSION
We investigated how the well-known capacity of binocular
complex cells for spatially invariant computation may benefit
stereoscopic vision. We compared two approaches to binocu-
lar matching. One approach uses computations implicit in the
standard model of binocular matching. We call this approach
“rigid matching” because it favors identical left and right images.
The other approach uses spatially invariant computations. It
is “flexible” in the sense it allows for small independent dis-
placements of fragments of left and right image parts, locally
warping the images, thus helping to find corresponding image
parts distorted by binocular projection. We modeled flexible
matching using the computational framework of MAX-pooling
(Riesenhuber and Poggio, 1999; Ullman et al., 2002; Serre et al.,
2007a,b; Ullman, 2007).

Differences of outcomes from rigid and flexible matching
were striking. Flexible matching was able to support efficient
matching for a much larger range of slants than rigid matching,
both in random-dot stereograms and in stimuli with naturalistic
(1/f) luminance distributions (Figure 8). We found that perfor-
mance of rigid matching significantly improved when combined
with image blur (Berg and Malik, 2001) (our Figures 9A,B),
but this result held only in random-dot stimuli. In stimuli with
naturalistic luminance distributions, blurring did not improve

Frontiers in Computational Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 47 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Vidal-Naquet and Gepshtein Spatially invariant computations in stereoscopic vision

performance of rigid matching, indicating that the spatially
invariant computation is suited for perception of the natural
visual environment.

In flexible matching, the amount of inter-ocular distortion
tolerated by the matching process depends on the parame-
ter we called template flexibility (μ, Equation 4) which repre-
sents different receptive field sizes of binocular complex cells.
We showed that the amount of template flexibility most suit-
able for the current stimulus could be determined automati-
cally, by WTA competition between cells with respective fields
of different sizes. This competition may proceed concurrently
and independently at many different stimulus locations, making
binocular matching highly adaptive to the diverse scene geome-
try (Figure 12). It is possible that adaptive blurring can further
improve performance: further studies should explore how adap-
tive blurring and adaptive flexible matching can be combined
optimally.

Tanabe et al. (2004) found evidence of competition between
hypotheses about binocular correspondence in cortical area V4.
Such competition is akin to the process of “voting” in our study,
which insured that the most suitable amount of matching flexi-
bility was used at every location in the stimulus. Yet physiological
studies have shown that the mechanisms that encode surface
shape span many cortical areas from primary to inferotemporal
cortical areas (Burkhalter and Essen, 1986; Uka et al., 2000, 2005;
Qiu and von der Heydt, 2005; Sanada and Ohzawa, 2006), making
it difficult to localize the neural substrate for these mechanisms.
Indeed, it is likely that these mechanisms are distributed across
several cortical areas.

We have focused on one component of binocular matching:
the computation of inter-ocular similarity. We have shown that
spatially-invariant computation of similarity is useful for dis-
covering the corresponding image parts distorted by binocular
projection. Since spatially-invariant computation is believed to be
performed by binocular complex cells, we consider implications
of our study for understanding the role of these cells in biological
stereopsis.

The standard view is that binocular complex cells play the
role of “disparity detectors”—i.e., they compute binocular dis-
parity (Qiang, 1994; Ohzawa, 1998; Anzai et al., 1999). Our
study suggests a different picture, that binocular complex cells
cooperate in the computation of inter-ocular similarity. Indeed,
receptive fields of individual complex cells are often too small to
sufficiently represent the spatial-frequency content of the stimu-
lus, which is essential for identifying corresponding image parts
(as Banks et al., 2004, pointed out). We propose that inter-
ocular similarity is computed by populations of complex cells
with retinotopically adjacent respective fields of different sizes.
This arrangement will have sufficient flexibility for finding corre-
sponding image parts of variable size and under variable amount
of image distortion.

Our results also suggest that binocular visual systems may do
well by avoiding an early commitment to binocular disparity.
Models of stereopsis commonly derive a single map of binocu-
lar disparity as soon as inter-ocular similarities are computed.
In our framework, multiple disparity maps are computed using

different magnitudes of template flexibility, simulating computa-
tions by binocular complex cells with receptive fields of differ-
ent size. The alternative disparity maps coexist up to the stage
where a higher-order stimulus property (such as tilt) is com-
puted, taking advantage of the information that would be lost
had the system committed to a single map of disparity early on.
Computational studies of other sensory processes showed that
preserving ambiguity about stimulus parameters until late stages
of the sensory process can benefit system performance: in mod-
els of feedforward computations (e.g., Serre et al., 2007a,b and
as implemented here) and also in models that involve feedback
(e.g., Epshtein et al., 2008), where outcomes of computations
at a late stage help to disambiguate results of early computa-
tions.

Our results indicate that the choice of stimulus for probing
the computation of inter-ocular similarity is significant. Spatially
invariant computations were more beneficial for stimuli with
naturalistic distribution of luminance than for random-dot stim-
uli. The advantage was more pronounced as the flexibility of
matching increased, both in terms of the spatial range of inter-
ocular comparisons (Figures 7, 8) and in terms of the number of
sub-templates (e.g., Figure 11). A likely reason for the stimulus
effect is the fact that correlation measures of image similarity are
highly sensitive to statistics of luminance in the images (Sharpee
et al., 2006; Vidal-Naquet and Tanifuji, 2007). These findings sug-
gest that results of studies of biological stereopsis that involved
random-dot luminance patterns may need to be revisited. Also,
the possibility should be considered that matching is adaptive and
so changes in luminance statistics may yield a different outcomes
of matching.

For example, Allenmark and Read (2010) found that rigid
matching failed to account for human perception of slanted
surfaces in random-dot stimuli. Allenmark and Read (2011) pro-
posed that the inconsistency between outcomes of rigid matching
and human performance could be resolved by adaptively increas-
ing the size of the correlation window: the larger the disparity
the larger the window (cf. Kanade and Okutomi, 1994). Future
studies should compare human performance and performance
of the alternative methods of matching using stimuli with nat-
uralistic distribution of luminance. Moreover, a combination
of the adaptive use of spatial invariance (as in our study) and
adaptive use of the size of correlation window (as in Kanade
and Okutomi, 1994 and Allenmark and Read, 2011) is likely
to be most beneficial, such that a full model of the biological
computation of inter-ocular similarity will incorporate adaptive
spatially-invariant matching on multiple spatial scales, helping to
explain the fact that biological vision is capable of reliable per-
formance at yet higher disparity gradients (Tyler, 1973; Burt and
Julesz, 1980; Allenmark and Read, 2010, 2011) than observed in
the present study.
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